Abstract

The process of charging and discharging of lithium-ion batteries results in the periodic intercalation and ejection of lithium ions in the anode material. High-capacity anode materials that are of significant interest for next-generation batteries, such as silicon, undergo large deformation during this process. The ensuing electro-chemo-mechanical stresses and accompanying microstructural changes lead to a complex state of inelastic deformation and damage in the silicon electrode that causes a significant capacity loss within just a few cycles. In this study, we attempt to understand, from an atomistic viewpoint, the mechanisms underlying the plasticity behavior of Si-anode as a function of lithiation. Conventional molecular dynamics simulations are of limited use since they are restricted to loading rates in the order of 108 s−1. Practical charging-discharging rates are several orders of magnitude slower, thus precluding a realistic atomistic assessment of the highly rate-dependent mechanical behavior of lithiated silicon anodes via conventional molecular dynamics. In this work, we use a time-scaling approach that is predicated on the combination of a potential energy surface sampling method, minimum energy pathway, kinetic Monte Carlo, and transition state theory, to achieve applied strain rates as low as 1 s−1. We assess and compare the atomistic mechanisms of plastic deformation in three different lithium concentration structures: LiSi2, LiSi, and Li15Si4 for various strain-rates. We find that the strain rate plays a significant role in the alteration of the deformation and damage mechanisms including the evolution of the plastic deformation, nucleation of shear transformation zone, and void nucleation. Somewhat anomalously, LiSi appears to demonstrate (comparatively) the least strain rate sensitivity.

References

1.
Li
,
M.
,
Lu
,
J.
,
Chen
,
Z.
, and
Amine
,
K.
,
2018
, “
30 Years of Lithium-Ion Batteries
,”
Adv. Mater.
,
30
(
33
), p.
1800561
. 10.1002/adma.201800561
2.
Liu
,
Y.
,
Zhu
,
Y.
, and
Cui
,
Y.
,
2019
, “
Challenges and Opportunities Towards Fast-Charging Battery Materials
,”
Nat. Energy
,
4
(
7
), pp.
540
550
.
3.
Ardebili
,
H.
,
2019
, “
A Perspective on the Mechanics Issues in Soft Solid Electrolytes and the Development of Next-Generation Batteries
,”
ASME J. Appl. Mech.
,
87
(
4
), pp.
1
4
.
4.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
,”
Adv. Mater.
,
25
(
36
), pp.
4966
4985
. 10.1002/adma.201301795
5.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
. 10.1038/nnano.2007.411
6.
Zhang
,
S.
,
Zhao
,
K.
,
Zhu
,
T.
, and
Li
,
J.
,
2017
, “
Electrochemomechanical Degradation of High-Capacity Battery Electrode Materials
,”
Prog. Mater. Sci.
,
89
, pp.
479
521
. 10.1016/j.pmatsci.2017.04.014
7.
Beaulieu
,
L. Y.
,
Eberman
,
K. W.
,
Turner
,
R. L.
,
Krause
,
L. J.
, and
Dahn
,
J. R.
,
2001
, “
Colossal Reversible Volume Changes in Lithium Alloys
,”
Electrochem. Solid-State Lett.
,
4
(
9
), pp.
A137
A140
. 10.1149/1.1388178
8.
Shi
,
F.
,
Song
,
Z.
,
Ross
,
P. N.
,
Somorjai
,
G. A.
,
Ritchie
,
R. O.
, and
Komvopoulos
,
K.
,
2016
, “
Failure Mechanisms of Single–Crystal Silicon Electrodes in Lithium–Ion Batteries
,”
Nat. Commun.
,
7
, p.
11886
. 10.1038/ncomms11886
9.
Wang
,
X.
,
Fan
,
F.
,
Wang
,
J.
,
Wang
,
H.
,
Tao
,
S.
,
Yang
,
A.
,
Liu
,
Y.
,
Chew
,
H. B.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Xia
,
S.
,
2015
, “
High Damage Tolerance of Electrochemically Lithiated Silicon
,”
Nat. Commun.
,
6
, p.
8417
. 10.1038/ncomms9417
10.
Ma
,
D.
,
Cao
,
Z.
, and
Hu
,
A.
,
2014
, “
Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
,”
Nano-Micro Lett.
,
6
(
4
), pp.
347
358
. 10.1007/s40820-014-0008-2
11.
Lu
,
J.
,
Chen
,
Z.
,
Pan
,
F.
,
Cui
,
Y.
, and
Amine
,
K.
,
2018
, “
High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
,”
Electrochem. Energy Rev.
,
1
(
1
), pp.
35
53
. 10.1007/s41918-018-0001-4
12.
Cui
,
Z.
,
Gao
,
F.
,
Cui
,
Z.
, and
Qu
,
J.
,
2012
, “
A Second Nearest-Neighbor Embedded Atom Method Interatomic Potential for Li–Si Alloys
,”
J. Power Sources
,
207
(
1
), pp.
150
159
. 10.1016/j.jpowsour.2012.01.145
13.
Khosrownejad
,
S. M.
, and
Curtin
,
W. A.
,
2017
, “
Crack Growth and Fracture Toughness of Amorphous Li–Si Anodes: Mechanisms and Role of Charging/Discharging Studied by Atomistic Simulations
,”
J. Mech. Phys. Solids
,
107
, pp.
542
559
. 10.1016/j.jmps.2017.06.010
14.
Ding
,
B.
,
Li
,
X.
,
Zhang
,
X.
,
Wu
,
H.
,
Xu
,
Z.
, and
Gao
,
H.
,
2015
, “
Brittle Versus Ductile Fracture Mechanism Transition in Amorphous Lithiated Silicon: From Intrinsic Nanoscale Cavitation to Shear Banding
,”
Nano Energy
,
18
, pp.
89
96
. 10.1016/j.nanoen.2015.10.002
15.
Zhao
,
K.
,
Wang
,
W. L.
,
Gregoire
,
J.
,
Pharr
,
M.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2011
, “
Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,”
Nano Lett.
,
11
(
7
), pp.
2962
2967
. 10.1021/nl201501s
16.
Wang
,
H.
,
Wang
,
X.
,
Xia
,
S.
, and
Chew
,
H. B.
,
2015
, “
Brittle-to-Ductile Transition of Lithiated Silicon Electrodes: Crazing to Stable Nanopore Growth
,”
J. Chem. Phys.
,
143
, p.
104703
. 10.1063/1.4930856
17.
Rodney
,
D.
,
Tanguy
,
A.
, and
Vandembroucq
,
D.
,
2011
, “
Modeling the Mechanics of Amorphous Solids at Different Length Scale and Time Scale
,”
Modell. Simul. Mater. Sci. Eng.
,
19
(
8
), p.
083001
. 10.1088/0965-0393/19/8/083001
18.
Voter
,
A. F.
,
Montalenti
,
F.
, and
Germann
,
T. C.
,
2002
, “
Extending the Time Scale in Atomistic Simulation of Materials
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
321
346
. 10.1146/annurev.matsci.32.112601.141541
19.
Henkelman
,
G.
,
Jónsson
,
H.
,
Lelièvre
,
T.
,
Mousseau
,
N.
, and
Voter
,
A. F.
,
2018
,
Handbook of Materials Modeling: Methods: Theory and Modeling
,
Springer
, pp.
1
10
.
20.
Fan
,
Y.
, and
Cao
,
P.
,
2018
,
Handbook of Materials Modeling: Applications: Current and Emerging Materials
,
Springer
, pp.
1
27
.
21.
Hammami
,
F.
, and
Kulkarni
,
Y.
,
2017
, “
Rate Dependence of Grain Boundary Sliding Via Time-Scaling Atomistic Simulations
,”
J. Appl. Phys.
,
121
(
8
), p.
085303
. 10.1063/1.4977105
22.
Mendez
,
J. P.
,
Ponga
,
M.
, and
Ortiz
,
M.
,
2018
, “
Diffusive Molecular Dynamics Simulations of Lithiation of Silicon Nanopillars
,”
J. Mech. Phys. Solids
,
115
, pp.
123
141
. 10.1016/j.jmps.2018.03.008
23.
Yan
,
X.
,
Gouissem
,
A.
, and
Sharma
,
P.
,
2015
, “
Atomistic Insights Into Li-Ion Diffusion in Amorphous Silicon
,”
Mech. Mater.
,
91
, pp.
306
312
. 10.1016/j.mechmat.2015.04.001
24.
Yan
,
X.
,
Gouissem
,
A.
,
Guduru
,
P. R.
, and
Sharma
,
P.
,
2017
, “
Elucidating the Atomistic Mechanisms Underpinning Plasticity in Li–Si Nanostructures
,”
Phys. Rev. Mater.
,
1
(
5
), p.
055401
. 10.1103/PhysRevMaterials.1.055401
25.
Li
,
J.
, and
Dahn
,
J. R.
,
2007
, “
An In Situ X-Ray Diffraction Study of the Reaction of Li With Crystalline Si
,”
J. Electrochem. Soc.
,
154
(
3
), pp.
A156
A161
. 10.1149/1.2409862
26.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
27.
Stukowski
,
A.
,
2010
, “
Extracting Dislocations and Non-Dislocation Crystal Defects From Atomistic Simulation Data
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
8
), p.
085001
.
28.
Kushima
,
A.
,
Lin
,
X.
,
Li
,
J.
,
Eapen
,
J.
,
Mauro
,
J. C.
,
Qian
,
X.
,
Diep
,
P.
, and
Yip
,
S.
,
2009
, “
Computing the Viscosity of Supercooled Liquids
,”
J. Chem. Phys.
,
130
(
22
), p.
224504
. 10.1063/1.3139006
29.
Kushima
,
A.
,
Lin
,
X.
,
Li
,
J.
,
Qian
,
X.
,
Eapen
,
J.
,
Mauro
,
J. C.
,
Diep
,
P.
, and
Yip
,
S.
,
2009
, “
Computing the Viscosity of Supercooled Liquids. II. Silica and Strong-Fragile Crossover Behavior
,”
J. Chem. Phys.
,
131
(
16
), p.
164505
. 10.1063/1.3243854
30.
Kushima
,
A.
,
Eapen
,
J.
,
Li
,
J.
,
Yip
,
S.
, and
Zhu
,
T.
,
2011
, “
Time Scale Bridging in Atomistic Simulation of Slow Dynamics: Viscous Relaxation and Defect Activation
,”
Eur. Phys. J. B
,
82
(
3–4
), p.
271
. 10.1140/epjb/e2011-20075-4
31.
Fan
,
Y.
,
Kushima
,
A.
, and
Yildiz
,
B.
,
2010
, “
Unfaulting Mechanism of Trapped Self-Interstitial Atom Clusters in Bcc Fe: A Kinetic Study Based on the Potential Energy Landscape
,”
Phys. Rev. B
,
81
(
10
), p.
104102
. 10.1103/PhysRevB.81.104102
32.
Cao
,
P.
,
Yoon
,
G.
,
Tao
,
W.
,
Eom
,
K.
, and
Park
,
H. S.
,
2015
, “
The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin
,”
Sci. Rep.
,
5
, p.
8757
. 10.1038/srep08757
33.
Yan
,
X.
,
Cao
,
P.
,
Tao
,
W.
,
Sharma
,
P.
, and
Park
,
H. S.
,
2016
, “
Atomistic Modeling at Experimental Strain Rates and Timescales
,”
J. Phys. D: Appl. Phys.
,
49
(
49
), p.
493002
. 10.1088/0022-3727/49/49/493002
34.
Voter
,
A. F.
,
2007
,
Radiation Effects in Solids: Introduction to the Kinetic Monte Carlo Method
,
Springer
, pp.
1
23
.
35.
Nguyen
,
L. D.
,
Baker
,
K. L.
, and
Warner
,
D. H.
,
2011
, “
Atomistic Predictions of Dislocation Nucleation With Transition State Theory
,”
Phys. Rev. B
,
84
(
2
), p.
024118
. 10.1103/PhysRevB.84.024118
36.
Fan
,
Y.
,
Osetskiy
,
Y. N.
,
Yip
,
S.
, and
Yildiz
,
B.
,
2013
, “
Mapping Strain Rate Dependence of Dislocation-Defect Interactions by Atomistic Simulations
,”
Proc. Natl. Acad. Sci. U.S.A
,
110
(
44
), pp.
17756
17761
. 10.1073/pnas.1310036110
37.
Li
,
W.
,
Rieser
,
J. M.
,
Liu
,
A. J.
,
Durian
,
D. J.
, and
Li
,
J.
,
2015
, “
Deformation-Driven Diffusion and Plastic Flow in Amorphous Granular Pillars
,”
Phys. Rev. E
,
91
(
6
), p.
062212
. 10.1103/PhysRevE.91.062212
38.
Shimizu
,
F.
,
Ogata
,
S.
, and
Li
,
J.
,
2007
, “
Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations
,”
Mater. Trans.
,
48
(
11
), pp.
2923
2927
. 10.2320/matertrans.MJ200769
39.
Zhao
,
K.-J.
,
Li
,
Y.-G.
, and
Brassart
,
L.
,
2013
, “
Pressure-Sensitive Plasticity of Lithiated Silicon in Li-Ion Batteries
,”
Acta. Mech. Sin.
,
29
(
3
), pp.
379
387
. 10.1007/s10409-013-0041-2
You do not currently have access to this content.