A novel design of accelerometer strapdown, intended for the estimation of the rigid-body acceleration and velocity fields, is proposed here. The authors introduce the concept of isotropic-polyhedral layout of simplicial biaxial accelerometers (SBA), in which one SBA is rigidly attached at the centroid of each face of the polyhedron. By virtue of both the geometric isotropy of the layout and the structural planar isotropy of the SBA, the point tangential relative acceleration is decoupled from its centripetal counterpart, which is filtered out, along with the angular velocity. The outcome is that the rigid-body angular acceleration can be estimated independent of the angular velocity, thereby overcoming a hurdle that mars the estimation process in current accelerometer strapdowns. An estimation algorithm, based on the extended Kalman filter, is included. Simulation results show an excellent performance of the proposed strapdowns in estimating the acceleration and velocity fields of a moving object along with its pose.

References

1.
Yazdi
,
N.
,
Ayazi
,
F.
, and
Najafi
,
K.
,
1998
, “
Micromachined Inertial Sensors
,”
Proc. IEEE
,
86
(
8
), pp.
1640
1658
.10.1109/5.704269
2.
Barbour
,
N.
, and
Schmidt
,
G.
,
2001
, “
Inertial Sensor Technology Trends
,”
IEEE Sens.
,
1
(
4
), pp.
332
339
.10.1109/7361.983473
3.
Collin
,
J.
, and
Lachapelle
,
G.
,
2002
, “
MEMS-IMU for Personal Positioning in a Vehicle—A Gyro-Free Approach
,”
GPS 2002 Conference (Session C3a)
,
Portland, OR
, Sept. 24–27.
4.
Cappa
,
P.
,
Patanè
,
F.
, and
Rossi
,
S.
,
2008
, “
Two Calibration Procedures for a Gyroscope-Free Inertial Measurement System Based on a Double-Pendulum Apparatus
,”
Meas. Sci. Technol.
,
19
(
5
), pp.
32
38
.10.1088/0957-0233/19/5/055204
5.
Dinapoli
,
L. D.
,
1965
, “
The Measurement of Angular Velocities Without the Use of Gyros
,” MS thesis, The Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA.
6.
Pickel
,
W. C.
,
2005
, “
Estimation of Postlaunch Angular Motion for Kinetic Energy Projectiles
,”
AIAA J. Guid. Control Dyn.
,
28
(
4
), pp.
604
610
.10.2514/1.7153
7.
Pamadi
,
K. B.
,
Ohlmeyer
,
E. J.
, and
Pepitone
,
T. R.
,
2004
, “
Assessment of a GPS Guided Spinning Projecting Using an Accelerometer-Only IMU
,”
AIAA
Paper No. 2004-4881.10.2514/6.2004-4881
8.
Tan
,
C. W.
, and
Park
,
S.
,
2005
, “
Design of Accelerometer-Based Inertial Navigation Systems
,”
IEEE Trans. Instrum. Meas.
,
54
(
6
), pp.
2520
2530
.10.1109/TIM.2005.858129
9.
Chen
,
J. H.
,
Lee
,
S. C.
, and
DeBra
,
D. B.
,
1994
, “
Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers
,”
AIAA J. Guid. Control Dyn.
,
17
(
2
), pp.
286
290
.10.2514/3.21195
10.
Tan
,
C. W.
,
Park
,
S.
,
Mostov
,
K.
, and
Varaiya
,
P.
,
2001
, “
Design of Gyroscope-Free Navigation Systems
,”
IEEE Transportation Systems Conference
,
Oakland, CA
, Aug. 25–29, pp.
286
291
.10.1109/ITSC.2001.948670
11.
Wang
,
Q.
,
Ding
,
M. L.
, and
Zhao
,
P.
,
2003
, “
A New Scheme of Non-Gyro Inertial Measurement Unit for Estimating Angular Velocity
,”
29th Annual Conference of the IEEE Industrial Electronics Society
(
IECON-2003
),
Roanoke, VA
, Nov. 2–6, pp.
1564
1567
.IECON.2003.1280290
12.
Lin
,
P. C.
, and
Ho
,
C. W.
,
2009
, “
Design and Implementation of a 9-Axis Inertial Measurement Unit
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
, May 12–17, pp.
736
741
.10.1109/ROBOT.2009.5152546
13.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
,
1975
, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
,
42
(
3
), pp.
552
556
.10.1115/1.3423640
14.
Cardou
,
P.
, and
Angeles
,
J.
,
2008
, “
Angular Velocity Estimation From the Angular Acceleration Matrix
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021003
.10.1115/1.2775495
15.
Cardou
,
P.
, and
Angeles
,
J.
,
2007
, “
Simplectic Architectures for True Multi-Axial Accelerometers: A Novel Application of Parallel Robots
,”
IEEE International Conference on Robotics and Automation
,
Rome, Italy
, Apr. 10–14, pp.
181
186
.10.1109/ROBOT.2007.363784
16.
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
, 3rd ed.,
Springer
,
New York
.
17.
Kreyszig
,
E.
,
1997
,
Advanced Engineering Mathematics
,
Wiley
,
New York
.
18.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.10.1016/S0094-114X(98)00051-2
19.
Zou
,
T.
, and
Angeles
,
J.
,
2012
, “
Structural and Instrumentation Design of a MEMS Biaxial Accelerometer
,” Department of Mechanical Engineering and Centre for Intelligent Machines, McGill University, Montreal, QC, Canada, Technical Report No. TR-CIM-06-12.
20.
Angeles
,
J.
,
2010
, “
On the Nature of the Cartesian Stiffness Matrix
,”
Ing. Mec. Tecnol. Desarrollo
,
3
(
5
), pp.
163
170
, available at: http://revistasomim.net/revistas/3_5/art1.pdf
21.
White
,
A. J.
, and
Young
,
J. B.
,
1993
, “
Time-Marching Method for the Prediction of Two-Dimensional, Unsteady Flows of Condensing Steam
,”
J. Propul. Power
,
9
(
4
), pp.
579
587
.10.2514/3.23661
22.
Jer-Nan
,
J.
, and
Minh
,
Q.
,
2004
,
Identification and Control of Mechanical Systems
,
Cambridge University
,
Cambridge, UK
.
23.
Baron
,
L.
, and
Angeles
,
J.
,
2000
, “
The Direct Kinematics of Parallel Manipulators Under Joint-Sensor Redundancy
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
12
19
.10.1109/70.833183
24.
Cardou
,
P.
,
2008
, “
Design of Multiaxial Accelerometers With Simplicial Architectures for Rigid-Body Pose and Twist Estimation
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
25.
Baltes
,
H.
,
Brand
,
O.
,
Fedder
,
G.
,
Hierold
,
C.
,
Korvink
,
J.
, and
Tabata
,
O.
,
2005
,
Circuit and System Integration
, Vol.
2
,
Wiley-VCH
,
Weinheim, Germany
.
You do not currently have access to this content.