Biologically-inspired design is challenging because it requires creative transfer across biological and engineering disciplines. The biologically-inspired design process could therefore be improved with new tools, methods, and pedagogy that enables a smooth transition from a biological example or concept to a conceptual engineering design based on existing engineering components and practices. Two important problems can arise immediately when an engineer or student attempts bioinspired design: I. The practitioner or student of biological inspiration or biomimicry may not understand what the biological mechanism is that underlies a particular function of interest, and may begin engineering conceptual design with a misunderstanding of the essential mechanism required. II. Even when the correct biological mechanism is identified and a conceptual biological model is developed prior to engineering design, it may remain difficult to transition from a biological conceptual model of mechanism to an engineering conceptual design because the way these systems are composed and manufactured can be entirely different. For these reasons a formal process is developed here that links biological science with engineering design: where a biological mechanism of interest is first abstracted to a mechanistic conceptual model that focuses on the scope of the function of interest and removes other levels of biological detail. This results in a physiologically-independent conceptual model that links biological and engineering concepts. Then, subsequently, this inter-disciplinary conceptual model is re-embodied as an engineering design concept utilizing the current state of engineering art, available engineering components, and best practices. An example is presented of an existing class of biologically-inspired legged robots and their relationship to an abstract mathematical model of whole-body animal locomotion. Also, a teaching method is proposed for model-based biologically-inspired engineering design.

This content is only available via PDF.
You do not currently have access to this content.