Abstract

This paper presents a transient analysis of the motion of unloaded upper pads in a tilting pad journal bearing. It is known that such pads can exhibit self-excited vibration called pad fluttering, which can initiate fatigue damage due to elastic contacts between the fluttering pad and the journal. Unlike previous studies, this work attempts to evaluate forces in the contact. This evaluation is done using a robust nonlinear model, which considers hydrodynamic lubrication, out-of-balance forces and Hertzian contacts. Furthermore, qualitative changes of the bearing’s components motions are analysed in a wide range of journal speeds using bifurcation diagrams, phase portraits and estimates of the largest Lyapunov coefficients. The analysis reveals the intriguing nature of the system, which bifurcates between the periodic motion, period-doubling and chaos.

This content is only available via PDF.
You do not currently have access to this content.