Analysis of rare failure events accurately is often challenging with an affordable computational cost in many engineering applications, and this is especially true for problems with high dimensional system inputs. The extremely low probabilities of occurrences for those rare events often lead to large probability estimation errors and low computational efficiency. Thus, it is vital to develop advanced probability analysis methods that are capable of providing robust estimations of rare event probabilities with narrow confidence bounds. Generally, confidence intervals of an estimator can be established based on the central limit theorem, but one of the critical obstacles is the low computational efficiency, since the widely used Monte Carlo method often requires a large number of simulation samples to derive a reasonably narrow confidence interval. This paper develops a new probability analysis approach that can be used to derive the estimates of rare event probabilities efficiently with narrow estimation bounds simultaneously for high dimensional problems. The asymptotic behaviors of the developed estimator has also been proved theoretically without imposing strong assumptions. Further, an asymptotic confidence interval is established for the developed estimator. The presented study offers important insights into the robust estimations of the probability of occurrences for rare events. The accuracy and computational efficiency of the developed technique is assessed with numerical and engineering case studies. Case study results have demonstrated that narrow bounds can be built efficiently using the developed approach, and the true values have always been located within the estimation bounds, indicating that good estimation accuracy along with a significantly improved efficiency.

This content is only available via PDF.
You do not currently have access to this content.