Supersonic combustion induced by a two-shock system has been studied using a chemical nonequilibrium, quasi one-dimensional flow model. The combustion of stoichiometric, premixed H2-air is described by a chemistry model which consists of 11 species and 28 reactions.

The freestream Mach numbers used in this calculations are 8, 10 and 12. The initial pressure is 0.01 atm and temperature 300 K. The first of the two shocks is a conical shock and the second is its reflection. Supersonic combustion has been predicted to occur at combustor pressures between 0.8 and 2.9 atmospheres, and temperatures between 1500 and 3000 K. The Mach number of the flow in the combustor is between 1.7 and 4. These combustor conditions are typical of the future hypersonic propulsion systems. The results also show the changes in the composition of the flow during the induction and heat release phases.

The two-shock system is assumed to be generated by a cone. For Mach 8, 10 and 12, the minimum cone angle for generating a strong enough two-shock system to induce supersonic combustion has also been identified.

This content is only available via PDF.
You do not currently have access to this content.