Beside appropriate turbulence and combustion modeling, the problem of an accurate prediction of turbulent diffusion flames usually requires accurate radiative heat transfer predictions as well. In this paper it is shown that the inclusion of radiation modeling into the overall numerical simulation is important if accurate temperature profiles are needed. Two different jet diffusion flame configurations are simulated in this work — a diluted hydrogen jet flame (80% H2 and 20% He by volume) [1–4], and a piloted methane jet diffusion flame (flame D) [5, 6]. The predictions are compared to experimental data. Radiation is modeled by a conservative discrete transfer radiation method (DTRM) [7, 8]. Turbulence is modeled by a classical k-ε and by a hybrid procedure, as proposed in [9]. Combustion modeling is based on the stationary laminar flamelet model (SLFM) [10], where the combustion/turbulence interaction is accomplished via the presumed β probability density function (β-PDF).

This content is only available via PDF.
You do not currently have access to this content.