Abstract

The minimization of autoignition risk is critical to the design of premixers of high power aeroderivative gas turbines as an increased use of highly reactive future fuels (for example, hydrogen or higher hydrocarbons) is anticipated. Safety factors based on ignition delays of homogeneous mixtures, are generally used to guide the choice of a residence time for a given premixer. However, autoignition chemistry at aeroderivative conditions is fast (0.5–2 milliseconds) and can be initiated within typical premixer residence times. The analysis of what takes place in this short period necessarily involves the study of low-temperature autoignition precursor chemistry, but precursors can change with fuel and local reactivity.

Chemical Explosive Modes are a natural alternative to study this as they can provide a measure of autoignition risk by considering the whole thermochemical state in the framework of an eigenvalue problem. When transport effects are included by coupling the evolution of the Chemical Explosive Modes to turbulence, it is possible to obtain a measure of spatial autoignition risk where both chemical (e.g. ignition delay) and aerodynamic (e.g. local residence time) influences are unified.

In this article, we describe a method that couples Large Eddy Simulation to newly developed, reduced autoignition chemical kinetics to study autoignition precursors in an example pre-mixer representative of real life geometric complexity. A blend of pure methane and dimethyl ether (DME), a common fuel used for experimental autoignition studies, was transported using the reduced mechanism (38 species / 238 reactions) at engine conditions at increasing levels of DME concentration until exothermic autoignition kernels were formed. The resolution of species profiles was ensured by using a thickened flame model where dynamic thickening was carried out with a flame sensor modified to work with multi-stage heat release.

The paper is outlined as follows: First, a reduced mechanism is constructed and validated for modeling methane as well as di-methyl ether (DME) autoignition. Second, sensitivity analysis is used to show the need for Chemical Explosive Modes. Third, the thickened flame model modifications are described and then applied to an example premixer at 25 bar / 890K preheat. The Chemical Explosive Mode analysis closely follows the large thermochemical changes in the premixer as a function of DME concentration and identifies where the premixer is sensitive and flame anchoring is likely to occur.

This content is only available via PDF.
You do not currently have access to this content.