Typical Concentrated Solar Power (CSP) central receiver power plants require the use of either an external or cavity receiver. Previous and current external receivers consist of a series of tubes connected to manifolds that form a cylindrical or rectangular shape such as in the cases of Solar One, Solar Two, and most recently the Ivanpah solar plant. These receivers operate at high surface temperatures (>600°C) at which point thermal re-radiation is significant. However, the geometric arrangement of these heat transfer tubes results in heat losses directly to the environment. This work focused on how to fundamentally reduce this heat loss through the manipulation of heat transfer tube configurations. Four receiver configurations are studied: flat receiver (base case study), a radial receiver with finned structures (fins arranged in a circular pattern on a cylinder), a louvered finned structure (horizontal and angled fins on a flat plate), and a vertical finned structure (fins oriented vertically along a flat plate). The thermal efficiency, convective heat loss patterns, and air flow around each receiver design is found using the computational fluid dynamics (CFD) code ANSYS FLUENT. Results presented in this paper show that alternative tubular configurations increase thermal efficiency by increasing the effective solar absorptance of these high-temperature receivers by increasing the light trapping effects of the receiver, reducing thermal emittance to the environment, and reducing the overall size of the receiver. Each receiver configuration has finned structures that take advantage of the directional dependence of the heliostat field resulting in a light trapping effect on the receiver. The finned configurations tend to lead to “hot” regions on the receiver, but the new configurations can take advantage of high local view factors (each surface can “see” another receiver surface) in these regions through the use of heat transfer fluid (HTF) flow patterns. The HTF reduces the temperatures in these regions increasing the efficiency of heat transfer to the fluid. Finally, the new receiver configurations have a lower overall optical intercept region resulting in a higher geometric concentration ratio for the receiver. Compared to the base case analysis (flat plate receiver), the novel tubular geometries results showed an increase in thermal efficiency.

This content is only available via PDF.
You do not currently have access to this content.