Abstract

Control Barrier Functions (CBFs) have become popular for enforcing — via barrier constraints — the safe operation of nonlinear systems within an admissible set. For systems with input delay(s) of the same length, constrained control has been achieved by combining a CBF for the delay free system with a state predictor that compensates the single input delay. Recently, this approach was extended to multi input systems with input delays of different lengths. One limitation of this extension is that barrier constraint adherence can only be guaranteed after the longest input delay has been compensated and all input channels become available for control. In this paper, we consider the problem of enforcing constraint adherence when only a subset of input delays have been compensated. In particular, we propose a new barrier constraint formulation that ensures that when possible, a subset of input channels with shorter delays will be utilized for keeping the system in the admissible set even before longer input delays have been compensated. We include a numerical example to demonstrate the effectiveness of the proposed approach.

This content is only available via PDF.
You do not currently have access to this content.