Abstract

Equivalent circuit models for batteries are commonly used in electric vehicle battery management systems to estimate state of charge and other important latent variables. They are computationally inexpensive, but suffer from a loss of accuracy over the full range of conditions that may be experienced in real-life. One reason for this is that the model parameters, such as internal resistance, change over the lifetime of the battery due to degradation. However, estimating long term changes is challenging, because parameters also change with state of charge and other variables. To address this, we modelled the internal resistance parameter as a function of state of charge and degradation using a Gaussian process (GP). This was performed computationally efficiently using an algorithm [1] that interprets a GP to be the solution of a linear time-invariant stochastic differential equation. As a result, inference of the posterior distribution of the GP scales as 𝒪(n) and can be implemented recursively using a Kalman filter.

This content is only available via PDF.
You do not currently have access to this content.