Efficient and safe battery charge control is an important prerequisite for large-scale deployment of clean energy systems. This paper proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. The implications of the upper voltage bound, ambient temperature, and cooling convection resistance to the optimization outcome are investigated as well.

This content is only available via PDF.
You do not currently have access to this content.