0

IN THIS ISSUE

Newest Issue


Research Papers

J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044249.

Shape control is a critical task in the composite fuselage assembly process due to the dimensional variabilities of incoming fuselages. To realize fuselage shape adjustment, actuators are used to pull or push several points on a fuselage. Given a fixed number of actuators, the locations of actuators on a fuselage will impact on the effectiveness of shape control. Thus, it is important to determine the optimal placement of actuators in the fuselage shape control problem. In current practice, the actuators are placed with equal distance along the edge of a fuselage without considering its incoming dimensional shape. Such practice has two limitations: (1) it is non-optimal and (2) larger actuator forces may be applied for some locations than needed. This paper proposes an optimal actuator placement methodology for efficient composite fuselage shape control by developing a sparse learning model and corresponding parameter estimation algorithm. The case study shows that our proposed method achieves the optimal actuator placement for shape adjustments of the composite fuselage.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044099.

Zinc-coated advanced high strength steels (AHSS) used in automotive applications are susceptible to liquid metal embrittlement (LME) during resistance spot welding (RSW). This study examines the impact of multiple pulse welding schedules on LME severity in welds of TRIP1100. Two different types of pulsing methodologies have been proposed to reduce LME severity: applying a pre-pulse before the welding current to remove the zinc coating and pulsing during the welding current to manage heat generation. However, the mechanisms by which these methods affect LME severity have not been fully explored. This work showed that a welding schedule consisting of two equal length pulses resulted in the least severe LME because it reduced the amount of free zinc available for LME without creating too much tensile stress. The majority of pre-pulse welding schedules caused an increase in LME cracking due to the additional heat introduced into the weld. However, a 4 kA (low current) pre-pulse applied for 3 cy (low time) reduced LME cracking by almost 30%. The pre-pulse allowed zinc to diffuse into the coating and stabilize the zinc, without introducing too much additional heat into the weld. These results indicate that multiple pulse welding schedules may be successfully used to reduce LME cracking, although the mechanisms by which they impact LME are more complicated than previously thought.

Topics: Welding , Welded joints , Heat
Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044100.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044102.

In metal cutting processes, the use of cutting fluids shows significant effects on workpiece surface quality by reducing thermomechanical loads on cutting tool and workpiece. Many efforts are made to model these thermomechanical processes, however without considering detailed heat transfer between cutting fluid, tool, and workpiece. To account for heat transfer effects, a coupling approach is developed, which combines computational fluid dynamics (CFD) and finite element method (FEM) chip formation simulation. Prior to the simulation, experimental investigations in orthogonal cutting in dry and wet cutting conditions with two different workpiece materials (AISI 1045 and DA 718) are conducted. To measure the tool temperature in dry as well as in wet cutting conditions, a two color pyrometer is placed inside an electrical discharge machining (EDM) drilled cutting tool hole. Besides tool temperature, the cutting force is recorded during the experiments and later used to calculate heat source terms for the CFD simulation. After the experiments, FEM chip formation simulations are performed and provide the chip forms for the CFD mesh generation. In general, CFD simulation and experiment are in reasonable agreement, as for each workpiece setup the measured temperature data are located between the simulation results from the two different tool geometries. Furthermore, numerical and experimental results both show a decrease of tool temperature in wet cutting conditions, however revealing a more significant cooling effect in a AISI 1045 workpiece setup. The results suggest that the placement of drilling holes has a major influence on the local tool temperature distribution, as the drilling hole equals a thermal resistance and hence leads to elevated temperatures at the tool front.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044251.

A great challenge of metal cutting modeling is the ability of the material constitutive model to describe the mechanical behavior of the work material under the deformation conditions that characterizes this process. In particular, metal cutting generates a large range of state of stresses, as well as strains and strain rates higher than those generated by conventional mechanical tests, including the Split-Hopkinson pressure bar tests. A new hybrid analytical–experimental methodology to identify the material constitutive model coefficients is proposed. This methodology is based on an in situ high-resolution imaging and digital image correlation (DIC) technique, coupled with an analytical model of orthogonal cutting. This methodology is particularly suitable for the identification of the constitutive model coefficients at strains and strain rates higher than those found in mechanical tests. Orthogonal cutting tests of nickel aluminum bronze alloy are performed to obtain the strains and strain rates fields in the cutting zone, using DIC technique. Shear forces derived from stress integrations are matched to the measured ones. Then, the constitutive model coefficients can be determined, which is performed by solving a sequential optimization problem. Verifications are made by comparing the strain, strain rate, and temperature fields of cutting zone from experiments against those obtained by finite element simulations using the identified material constitutive model coefficients as input.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044255.

Self-piercing riveting has been widely used in vehicle body manufacturing to join aluminum alloys or aluminum to steel. However, it is difficult to rivet ultrahigh strength steel (UHSS) because of its resistance to piercing of the rivet. In this paper, a thermally assisted self-piercing riveting (TA-SPR) process was proposed to improve riveting of the UHSS, through locally preheating the UHSS sheet using an induction coil prior to the traditional self-piercing riveting (SPR) process. An experimental system consisting of inductive heating apparatus, conventional self-piercing riveting equipment, and coupon transfer mechanism was established and the steps, e.g., preheating, coupons transfer, and riveting, were automatically conducted at preset schedules. Based on experiments with this system, the effects of heating current, heating time, and coil heating distance on riveting of AA6061-T6 and DP980 were examined systematically by metallurgical analyses and mechanical tests. It was found that an appropriate combination of heating current and heating time, e.g., 0.5 s at 600 A, could produce crack-free joints having 77.8% higher undercut and 24% higher lap-shear strength, compared with results obtained using a conventional SPR process.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2019;141(10):. doi:10.1115/1.4044103.

We demonstrate a novel approach to study shear banding in machining at low speeds using a low melting point alloy. In situ imaging and an image correlation method, particle image velocimetry (PIV), are used to capture shear band nucleation and quantitatively analyze the temporal evolution of the localized plastic flow around a shear band. The observations show that the shear band onset is governed by a critical shear stress criterion, while the displacement field around a freshly nucleated shear band evolves in a manner resembling the classical boundary layer formation in viscous fluids. The relevant shear band parameters, the stress at band formation, and local shear band viscosity are presented.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In