Newest Issue

Research Papers

J. Manuf. Sci. Eng. 2018;140(7):071001-071001-16. doi:10.1115/1.4039383.

Barrel-shaped surfaces are widely used in industries, e.g., blades, vases, and tabular parts. Because a part such as an aero-engine blade is typically quite large, the efficiency of its measurement becomes a critical issue. The recently emerged five-axis sweep scanning technology offers to be a powerful means to significantly increase the efficiency of measurement. However, currently it still mostly relies on humans to manually plan a five-axis sweep scanning path, and in most cases, the surface is simply divided into a number of smaller open patches for which the sweep scanning is then individually planned. We present an algorithm for automatically planning the five-axis sweep scanning for an arbitrary barrel-shaped surface in the form of either a compound, a trimmed, or a simple surface. The planning algorithm is novel in that no partitioning of the surface is needed and a single continuous five-axis sweep scanning path will be generated for the entire surface. By eliminating the nonsweeping time spent by the stylus due to its air-moves between multiple patches and also the time-costly approach-retraction operations required for each patch, the proposed algorithm is able to significantly reduce the total inspection time, sometimes more than 50%, as validated in our physical inspection experiments.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071002-071002-11. doi:10.1115/1.4039556.

Like many other additive manufacturing (AM) processes, fused deposition modeling (FDM) process is driven by a moving heat source, and temperature history plays an important role in determining the mechanical properties and geometry of the final parts. Thermal simulation of FDM is challenging due to geometric complexity of manufacturing process and inherent computational complexity which requires numerical solution at every time increment of the process. We describe a new approach to thermal simulation of the FDM process, formulated as an explicit finite difference method that is applied directly on as-manufactured model described by a typical manufacturing process plan. The thermal model accounts for most relevant thermal effects including heat convection and radiation to the environment, heat conduction with build platform and between adjacent roads (and adjacent layers). We show that the proposed simulation method achieves linear time complexity both theoretically and numerically. This implies that the simulation not only scales to handle three-dimensional (3D) printed components of arbitrary complexity but also can achieve real-time performance. The approach is fully implemented, validated against known analytic solutions, and is tested on realistic complex shapes.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071003-071003-10. doi:10.1115/1.4039649.

The manufacturing of low-density paper such as tissue and towel typically involves a key operation called creping. In this process, the wet web is continuously pressed onto the hot surface of a rotating cylinder sprayed with adhesive chemicals, dried in place, and then scraped off by a doctor blade. The scraping process produces periodic microfolds in the web, which enhance the bulk, softness, and absorbency of the final tissue products. Various parameters affect the creping process and finding the optimal combination is currently limited to costly full-scale experiments. In this paper, we apply a one-dimensional (1D) particle dynamics model to systematically study creping. The web is modeled as a series of discrete particles connected by viscoelastic elements. A mixed-mode discrete cohesive zone model (CZM) is embedded to describe the failure of the adhesive layer. Self-contact of the web is incorporated in the model using a penalty method. Our simulation results delineate three typical stages during the formation of a microfold: interfacial delamination, web buckling, and post-buckling deformation. The effects of key control parameters on creping are then studied. The creping angle and the web thickness are found to have the highest impact on creping. An analytical solution for the maximum creping force applied by the blade is derived and is found to be consistent with the simulation. The proposed model is shown to be able to capture the mechanism of crepe formation in the creping process and may provide useful insights into the manufacturing of tissue paper.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071004-071004-9. doi:10.1115/1.4039439.

Vacuum arc remelting (VAR) is a melting process for the production of homogeneous ingots, achieved by applying a direct current to create electrical arcs between the input electrode and the resultant ingot. Arc behavior drives quality of the end product, but no methodology is currently used in VAR furnaces at large scale to track arcs in real time. An arc position sensing (APS) technology was recently developed as a methodology to predict arc locations using magnetic field values measured by sensors. This system couples finite element analysis of VAR furnace magnetostatics with direct magnetic field measurements to predict arc locations. However, the published APS approach did not consider the effect of various practical issues that could affect the magnetic field distribution and thus arc location predictions. In this paper, we studied how altering assumptions made in the finite element model affect arc location predictions. These include the vertical position of the sensor relative to the electrode–ingot gap, a varying electrode–ingot gap size, ingot shrinkage, and the use of multiple sensors rather than a single sensor. Among the parameters studied, only vertical distance between arc and sensor locations causes large sources of error and should be considered further when applying an APS system. However, averaging the predicted locations from four evenly spaced sensors helps reduce this error to no more than 16% for a sensor position varying from 0.508 m below and above the electrode–ingot gap height.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071005-071005-12. doi:10.1115/1.4039491.

A heterogeneous object (HO) refers to a solid component consisting of two or more material primitives distributed either continuously or discontinuously within the object. HOs are commonly divided into three categories. The first category has distinct material domains separating the different materials. The second, called functionally graded materials (FGMs), has continuous variation of material composition that produces gradient in material properties. The third category allows for any combinations of the first two categories within the same part. Modeling and manufacturing of HOs has recently generated more interest due to the advent of additive manufacturing (AM) technology that makes it possible to build such parts. Directed energy deposition (DED) processes have the potential for depositing multiple powdered materials in various compositions in the process of creating a single layer of material. To make this possible, tool paths that provide proper positioning of the deposition head and proper control over the material composition are required. This paper presents an approach for automatically generating the toolpath for any type of HO considering the material composition changes that are required on each layer. The toolpath generation takes into account the physical limitations of the machine associated with powder delivery and ability to continually grade the materials. Simulation results using the toolpath generation methodology are demonstrated by several example parts.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071006-071006-15. doi:10.1115/1.4039555.

Fiber waviness is one of the most significant defects that occurs in composites due to the severe knockdown in mechanical properties that it causes. This paper investigates the mechanisms for the generation of fiber path defects during processing of composites prepreg materials and proposes new predictive numerical models. A key focus of the work was on thick sections, where consolidation of the ply stack leads to out of plane ply movement. This deformation can either directly lead to fiber waviness or can cause excess fiber length in a ply that in turn leads to the formation of wrinkles. The novel predictive model, built on extensive characterization of prepregs in small-scale compaction tests, was implemented in the finite element software abaqus as a bespoke user-defined material. A number of industrially relevant case studies were investigated to demonstrate the formation of defects in typical component features. The validated numerical model was used to extend the understanding gained from manufacturing trials to isolate the influence of various material, geometric, and process parameters on defect formation.

Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071007-071007-15. doi:10.1115/1.4039646.

Gear shaping is, currently, the most prominent method for machining internal gears, which are a major component in planetary gearboxes. However, there are few reported studies on the mechanics of the process. This paper presents a comprehensive model of gear shaping that includes the kinematics, cutter–workpiece engagement (CWE), and cutting forces. To predict the cutting forces, the CWE is calculated at discrete time steps using a tridexel discrete solid modeler. From the CWE in tridexel form, the two-dimensional (2D) chip geometry is reconstructed using Delaunay triangulation (DT) and alpha shape reconstruction. This in turn is used to determine the undeformed chip geometry along the cutting edge. The cutting edge is discretized into nodes with varying cutting force directions (tangential, feed, and radial), inclination angles, and rake angles. If engaged in the cut during a particular time-step, each node contributes an incremental force vector calculated with the oblique cutting force model. Using a three-axis dynamometer on a Liebherr LSE500 gear shaping machine tool, the cutting force prediction algorithm was experimentally verified on a variety of processes and gears, which included an internal spur gear, external spur gear, and external helical gear. The simulated and measured force profiles correlate closely with about 3–10% RMS error.

Topics: Gears , Cutting , Kinematics
Commentary by Dr. Valentin Fuster
J. Manuf. Sci. Eng. 2018;140(7):071008-071008-10. doi:10.1115/1.4039651.

Elastic deflection of cutting tools relative to the workpiece is one of the major factors contributing to dimensional part inaccuracies in machining. This paper examines the effect of tool deflection in gear shaping and its effect on the gear's profile form error, which can cause transmission error and noise during gear operation. To simulate elastic tool deflection in gear shaping, the tool's static stiffness is estimated from impact hammer testing. Then, based on simulated cutter-workpiece engagement and predicted cutting forces, the elastic deflection of the tool is calculated at each time-step. To examine the effect of tool deflection on the profile error of the gear, a virtual gear measurement module is developed and used to predict the involute profile deviations in the virtually machined part. Simulated and measured profile deviations were compared for a one-pass external spur gear process and a two-pass external spur gear process. The simulated profile errors correlate very well with the measured profiles on the left flanks of the workpiece teeth, which are cut by the leading edges of the cutter teeth. However, additional research is needed to improve the prediction of the right flanks, which are cut by the trailing edges of the cutter teeth.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In