Bendsøe, M. P., and Kikuchi, N., 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71(2), pp. 197–224.

[CrossRef]Bendsøe, M. P., 1989, “Optimal Shape Design As a Material Distribution Problem,” Struct. Optim., 1(4), pp. 192–202.

[CrossRef]Zhou, M., and Rozvany, G., 1991, “The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization,” Comput. Methods Appl. Mech. Eng., 89(1–3), pp. 309–336.

[CrossRef]Xie, Y., and Steven, G. P., 1993, “A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct., 49(5), pp. 885–896.

[CrossRef]Wang, M. Y., Wang, X., and Guo, D., 2003, “A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192(1), pp. 227–246.

[CrossRef]Allaire, G., Jouve, F., and Toader, A., 2004, “Structural Optimization Using Sensitivity Analysis and a Level-set Method,” J. Comput. Phys., 194, pp. 363–393.

[CrossRef]Sokołowski, J., and Żochowski, A., 2001, “Topological Derivative in Shape Optimization,” Encyclopedia of Optimization, Springer, New York, pp. 2625–2626.

Suresh, K., 2013, “Efficient Generation of Large-Scale Pareto-Optimal Topologies,” Struct. Multidiscip. Optim., 47(1), pp. 49–61.

[CrossRef]Lopes, C. G., Santos, R. B. d., and Novotny, A. A., 2015, “Topological Derivative-Based Topology Optimization of Structures Subject to Multiple Load-Cases,” Latin Am. J. Solids Struct., 12(5), pp. 834–860.

[CrossRef]Deaton, J. D., and Grandhi, R. V., 2014, “A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000,” Struct. Multidiscip. Optim., 49(1), pp. 1–38.

[CrossRef]Gibson, I., Rosen, D., and Stucker, B., 2014, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, New York.

Lefky, C. S., Zucker, B., Wright, D., Nassar, A. R., Simpson, T. W., and Hildreth, O. J., 2017, “Dissolvable Supports in Powder Bed Fusion-Printed Stainless Steel,” 3D Printing Additive Manuf., 4(1), pp. 3–11.

[CrossRef]Strano, G., Hao, L., Everson, R. M., and Evans, K. E., 2013, “Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting,” J. Mater. Process. Technol., 213(4), pp. 589–597.

[CrossRef]Ventola, L., Robotti, F., Dialameh, M., Calignano, F., Manfredi, D., Chiavazzo, E., and Asinari, P., 2014, “Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering,” Int. J. Heat Mass Transfer, 75, pp. 58–74.

[CrossRef]Snyder, J. C., Stimpson, C. K., Thole, K. A., and Mongillo, D. J., 2015, “Build Direction Effects on Microchannel Tolerance and Surface Roughness,” ASME J. Mech. Des., 137(11), p. 111411.

[CrossRef]Bikas, H., Stavropoulos, P., and Chryssolouris, G., 2016, “Additive Manufacturing Methods and Modelling Approaches: A Critical Review,” Int. J. Adv. Manuf. Technol., 83(1–4), pp. 389–405.

[CrossRef]Stimpson, C. K., Snyder, J. C., Thole, K. A., and Mongillo, D., 2016, “Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels,” ASME J. Turbomach., 138(5), p. 051008.

[CrossRef]Kirsch, K. L., and Thole, K. A., 2017, “Pressure Loss and Heat Transfer Performance for Additively and Conventionally Manufactured Pin Fin Arrays,” Int. J. Heat Mass Transfer., 108(Pt. B), pp. 2502–2513.

[CrossRef]Delgado, J., Ciurana, J., and Rodríguez, C. A., 2012, “Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials,” Int. J. Adv. Manuf. Technol., 60(5–8), pp. 601–610.

[CrossRef]Liu, J., and Ma, Y., 2016, “A Survey of Manufacturing Oriented Topology Optimization Methods,” Adv. Eng. Softw., 100, pp. 161–175.

[CrossRef]Zhou, M., Fleury, R., Shyy, Y.-K., Thomas, H., and Brennan, J., 2002, “Progress in Topology Optimization With Manufacturing Constraints,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, Sept. 4–6, p. 5614.

Xia, Q., Shi, T., Wang, M. Y., and Liu, S., 2010, “A Level Set Based Method for the Optimization of Cast Part,” Struct. Multidiscip. Optim., 41(5), pp. 735–747.

[CrossRef]Xia, Q., Shi, T., Wang, M. Y., and Liu, S., 2011, “Simultaneous Optimization of Cast Part and Parting Direction Using Level Set Method,” Struct. Multidiscip. Optim., 44(6), pp. 751–759.

[CrossRef]Gersborg, A. R., and Andreasen, C. S., 2011, “An Explicit Parameterization for Casting Constraints in Gradient Driven Topology Optimization,” Struct. Multidiscip. Optim., 44(6), pp. 875–881.

[CrossRef]Sato, Y., Yamada, T., Izui, K., and Nishiwaki, S., 2017, “Manufacturability Evaluation for Molded Parts Using Fictitious Physical Models, and Its Application in Topology Optimization,” Int. J. Adv. Manuf. Technol., 92(1–4), pp. 1391–1409.

[CrossRef]Li, Q., Chen, W., Liu, S., and Fan, H., 2018, “Topology Optimization Design of Cast Parts Based on Virtual Temperature Method,” Comput.-Aided Des., 94, pp. 28–40.

[CrossRef]Guest, J. K., and Zhu, M., 2012, “Casting and Milling Restrictions in Topology Optimization Via Projection-Based Algorithms,” ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, Aug. 12–18, American Society of Mechanical Engineers, New York, pp. 913–920.

Li, H., Li, P., Gao, L., Zhang, L., and Wu, T., 2015, “A Level Set Method for Topological Shape Optimization of 3D Structures With Extrusion Constraints,” Comput. Methods Appl. Mech. Eng., 283, pp. 615–635.

[CrossRef]Zhou, Y., and Saitou, K., 2018, “Gradient-Based Multi-Component Topology Optimization for Stamped Sheet Metal Assemblies (MTO-S),” Struct. Multidiscip. Optim., 58(1), pp. 83–94.

[CrossRef]Zhang, S., Norato, J. A., Gain, A. L., and Lyu, N., 2016, “A Geometry Projection Method for the Topology Optimization of Plate Structures,” Struct. Multidiscip. Optim., 54(5), pp. 1173–1190.

[CrossRef]Zhang, S., Gain, A. L., and Norato, J. A., 2018, “A Geometry Projection Method for the Topology Optimization of Curved Plate Structures With Placement Bounds,” Int. J. Numer. Methods Eng., 114(2), pp. 128–146.

[CrossRef]Poulsen, T. A., 2003, “A New Scheme for Imposing a Minimum Length Scale in Topology Optimization,” Int. J. Numer. Methods Eng., 57(6), pp. 741–760.

[CrossRef]Guest, J., Prévost, J., and Belytschko, T., 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61(2), pp. 238–254.

[CrossRef]Wang, F., Lazarov, B., and Sigmund, O., 2011, “On Projection Methods, Convergence and Robust Formulations in Topology Optimization,” Struct. Multidiscip. Optim., 43(6), pp. 767–784.

[CrossRef]Qian, X., and Sigmund, O., 2012, “Topological Design of Electromechanical Actuators With Robustness Toward Over-and Under-Etching,” Comput. Methods Appl. Mech. Eng., 253, pp. 237–251.

[CrossRef]Zhou, M., Lazarov, B. S., Wang, F., and Sigmund, O., 2015, “Minimum Length Scale in Topology Optimization by Geometric Constraints,” Comput. Methods Appl. Mech. Eng., 293, pp. 266–282.

[CrossRef]Allaire, G., Jouve, F., and Michailidis, G., 2016, “Thickness Control in Structural Optimization Via a Level Set Method,” Struct. Multidiscip. Optim., 53(6), pp. 1349–1382.

[CrossRef]Guest, J. K., 2009, “Imposing Maximum Length Scale in Topology Optimization,” Struct. Multidiscip. Optim., 37(5), pp. 463–473.

[CrossRef]Wang, Y., Zhang, L., and Wang, M. Y., 2016, “Length Scale Control for Structural Optimization by Level Sets,” Comput. Methods Appl. Mech. Eng., 305, pp. 891–909.

[CrossRef]Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., and Martina, F., 2016, “Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints,” CIRP Annals-Manuf. Technol., 65(2), pp. 737–760.

[CrossRef]Brackett, D., Ashcroft, I., and Hague, R., 2011, “Topology Optimization for Additive Manufacturing,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug. 8–10, pp. 348–362.

Leary, M., Merli, L., Torti, F., Mazur, M., and Brandt, M., 2014, “Optimal Topology for Additive Manufacture: a Method for Enabling Additive Manufacture of Support-Free Optimal Structures,” Mater. Des., 63, pp. 678–690.

[CrossRef]Gaynor, A. T., Meisel, N. A., Williams, C. B., and Guest, J. K., 2014, “Topology Optimization for Additive Manufacturing: Considering Maximum Overhang Constraint,” 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, June 16–20, p. 2036.

Langelaar, M., 2016, “An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs,” Struct. Multidiscip. Optim., 55(3), pp. 871–883.

[CrossRef]Langelaar, M., 2016, “Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing,” Additive Manuf., 12(Pt. A), pp. 60–70.

[CrossRef]Qian, X., 2017, “Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach,” Int. J. Numer. Methods Eng., 111(3), pp. 247–272.

[CrossRef]Mezzadri, F., Bouriakov, V., and Qian, X., 2018, “Topology Optimization of Self-supporting Support Structures for Additive Manufacturing,” Additive Manuf., 21, pp. 666–682.

[CrossRef]Asadpoure, A., Guest, J. K., and Valdevit, L., 2014, “Incorporating Fabrication Cost Into Topology Optimization of Discrete Structures and Lattices,” Struct. Multidiscip. Optim., 51(2), pp. 385–396.

[CrossRef]Mirzendehdel, A. M., and Suresh, K., 2016, “Support Structure Constrained Topology Optimization for Additive Manufacturing,” Comput.-Aided Des., 81, pp. 1–13.

[CrossRef]Haber, R. B., Jog, C. S., and Bendsøe, M. P., 1996, “A New Approach to Variable-topology Shape Design Using a Constraint on Perimeter,” Struct. Optim., 11(1–2), pp. 1–12.

[CrossRef]Petersson, J., and Sigmund, O., 1998, “Slope Constrained Topology Optimization,” Int. J. Numer. Methods Eng., 41(8), pp. 1417–1434.

[CrossRef]Clausen, A., Aage, N., and Sigmund, O., 2015, “Topology Optimization of Coated Structures and Material Interface Problems,” Comput. Methods Appl. Mech. Eng., 290, pp. 524–541.

[CrossRef]Clausen, A., Aage, N., and Sigmund, O., 2016, “Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load,” Engineering, 2(2), pp. 250–257.

[CrossRef]Clausen, A., Andreassen, E., and Sigmund, O., 2017, “Topology Optimization of 3D Shell Structures With Porous Infill,” Acta Mech. Sinica, 33(4), pp. 778–791.

[CrossRef]Wang, C., and Qian, X., 2018, “A Density Gradient Approach to Topology Optimization Under Design-Dependent Boundary Loading,” ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. V02BT03A012.

Stolpe, M., and Svanberg, K., 2001, “An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization,” Struct. Multidiscip. Optim., 22(2), pp. 116–124.

[CrossRef]Wang, C., and Qian, X., 2018, “Heaviside Projection-Based Aggregation in Stress-Constrained Topology Optimization,” Int. J. Numer. Methods Eng., 115(7), pp. 849–871.

[CrossRef]Xu, S., Cai, Y., and Cheng, G., 2010, “Volume Preserving Nonlinear Density Filter Based on Heaviside Functions,” Struct. Multidiscip. Optim., 41(4), pp. 495–505.

[CrossRef]Eslami, M. R., Hetnarski, R. B., Ignaczak, J., Noda, N., Sumi, N., and Tanigawa, Y., 2013, Theory of Elasticity and Thermal Stresses, Vol. 197, Springer, New York.

Lazarov, B. S., and Sigmund, O., 2011, “Filters in Topology Optimization Based on Helmholtz-Type Differential Equations,” Int. J. Numer. Methods Eng., 86(6), pp. 765–781.

[CrossRef]Cho, S., and Choi, J.-Y., 2005, “Efficient Topology Optimization of Thermo-Elasticity Problems Using Coupled Field Adjoint Sensitivity Analysis Method,” Finite Elements Anal. Des., 41(15), pp. 1481–1495.

[CrossRef]Svanberg, K., 1987, “The Method of Moving Asymptotes—A New Method for Structural Optimization,” Int. J. Numer. Methods Eng., 24(2), pp. 359–373.

[CrossRef]Logg, A., Mardal, K.-A., and Wells, G., 2012, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84, Springer Science & Business Media, Berlin.

Bruyneel, M., and Duysinx, P., 2005, “Note on Topology Optimization of Continuum Structures Including Self-weight,” Struct. Multidiscip. Optim., 29(4), pp. 245–256.

[CrossRef]Zhang, W., Yang, J., Xu, Y., and Gao, T., 2014, “Topology Optimization of Thermoelastic Structures: Mean Compliance Minimization Or Elastic Strain Energy Minimization,” Struct. Multidiscip. Optim., 49(3), pp. 417–429.

[CrossRef]ISO 11562, 1996, Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Metrological Characteristics of Phase Correct Filters, International Organization for Standardization, Geneva.

ASME B46.1, 2003, Surface Texture: Surface Roughness, Waviness and Lay, American Society of Mechanical Engineers, New York.

ISO 4287, 1997, Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Terms, Definitions and Surface Texture Parameters, International Organization for Standardization, Geneva.

Townsend, A., Senin, N., Blunt, L., Leach, R., and Taylor, J., 2016, “Surface Texture Metrology for Metal Additive Manufacturing: A Review,” Precision Eng., 46, pp. 34–47.

[CrossRef]