0
Research Papers

New Multiscale Approach for Machining Analysis of Natural Fiber Reinforced
Bio-Composites

[+] Author and Article Information
Faissal Chegdani

Arts et Métiers ParisTech,
MSMP Laboratory (EA 7350),
Rue Saint Dominique, BP 508,
Châlons-en-Champagne 51006, France
e-mail: faissal.chegdani@ensam.eu

Mohamed El Mansori

Arts et Métiers ParisTech,
MSMP Laboratory (EA 7350),
Rue Saint Dominique, BP 508,
Châlons-en-Champagne 51006, France;
Texas A&M Engineering Experiment Station,
College Station, TX 77843
e-mail: mohamed.elmansori@ensam.eu

1Corresponding author.

Manuscript received March 30, 2018; final manuscript received August 21, 2018; published online October 17, 2018. Assoc. Editor: Radu Pavel.

J. Manuf. Sci. Eng 141(1), 011004 (Oct 17, 2018) (9 pages) Paper No: MANU-18-1195; doi: 10.1115/1.4041326 History: Received March 30, 2018; Revised August 21, 2018

Natural fibers are emerging in many industrial sectors to perform eco-friendly materials such as bio-composites. However, machining of natural fiber reinforced polymer (NFRP) composites remains a complex manufacturing process and the machinability of industrial components underlies a specific approach that involves the multiscale structure of natural fibers. This paper presents first a multiscale method used in machinability rating of NFRP. The fundamentals of the multiscale method are hence applied to experimentally assess the machinability of a complete industrial bio-composite part. Results show that machining NFRP composites requires specific analysis scales that are intimately linked to the natural fibrous structure. The multiscale method can be used to improve the experimental design of NFRP machining and, above all, to determine the optimum process parameters that reflect the multiscale machining characteristics of these bio-based materials.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Shalwan, A. , and Yousif, B. F. , 2013, “ In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres,” Mater. Des., 48, pp. 14–24. [CrossRef]
Dittenber, D. B. , and GangaRao, H. V. S. , 2012, “ Critical Review of Recent Publications on Use of Natural Composites in Infrastructure,” Composites, Part A, 43(8), pp. 1419–1429. [CrossRef]
John, M. , and Thomas, S. , 2008, “ Biofibres and Biocomposites,” Carbohydr. Polym., 71(3), pp. 343–364. [CrossRef]
Faruk, O. , Bledzki, A. K. , Fink, H.-P. , and Sain, M. , 2012, “ Biocomposites Reinforced With Natural Fibers: 2000–2010,” Prog. Polym. Sci., 37(11), pp. 1552–1596. [CrossRef]
Sobczak, L. , Lang, R. W. , and Haider, A. , 2012, “ Polypropylene Composites With Natural Fibers and Wood—General Mechanical Property Profiles,” Compos. Sci. Technol., 72(5), pp. 550–557. [CrossRef]
Wambua, P. , Ivens, J. , and Verpoest, I. , 2003, “ Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics?,” Compos. Sci. Technol., 63(9), pp. 1259–1264. [CrossRef]
Shah, D. U. , 2013, “ Developing Plant Fibre Composites for Structural Applications by Optimising Composite Parameters: A Critical Review,” J. Mater. Sci., 48(18), pp. 6083–6107. [CrossRef]
Koronis, G. , Silva, A. , and Fontul, M. , 2013, “ Green Composites: A Review of Adequate Materials for Automotive Applications,” Composites, Part B, 44(1), pp. 120–127. [CrossRef]
Khalfallah, M. , Abbès, B. , Abbès, F. , Guo, Y. Q. , Marcel, V. , Duval, A. , Vanfleteren, F. , and Rousseau, F. , 2014, “ Innovative Flax Tapes Reinforced Acrodur Biocomposites: A New Alternative for Automotive Applications,” Mater. Des., 64, pp. 116–126. [CrossRef]
Moussa, K. , Valérie, M. , Arnaud, D. , Boussad, A. , Fazilay, A. , Ying Qiao, G. , François, V. , and Frédéric, R. , 2014, “ Flax/Acrodur® Sandwich Panel: An Innovative Eco-Material for Automotive Applications,” JEC Compos. Mag., 51(89), pp. 54–59 http://www.jeccomposites.com/knowledge/jec-composites-magazine-digital-issues.
Meredith, J. , Ebsworth, R. , Coles, S. R. , Wood, B. M. , and Kirwan, K. , 2012, “ Natural Fibre Composite Energy Absorption Structures,” Compos. Sci. Technol., 72(2), pp. 211–217. [CrossRef]
Jiang, L. , Walczyk, D. F. , and Li, B. , 2018, “ Modeling of Glue Penetration Into Natural Fiber Reinforcements by Roller Infusion,” ASME J. Manuf. Sci. Eng., 140(4), p. 041006. [CrossRef]
Jiang, L. , Walczyk, D. , and McIntyre, G. , 2016, “ A New Approach to Manufacturing Biocomposite Sandwich Structures: Investigation of Preform Shell Behavior,” J. Manuf. Sci. Eng., 139(2), p. 021014. [CrossRef]
Shah, D. U. , 2014, “ Natural Fibre Composites: Comprehensive Ashby-Type Materials Selection Charts,” Mater. Des., 62, pp. 21–31. [CrossRef]
Davim, J. P. , and Reis, P. , 2005, “ Damage and Dimensional Precision on Milling Carbon Fiber-Reinforced Plastics Using Design Experiments,” J. Mater. Process. Technol., 160(2), pp. 160–167. [CrossRef]
Abrate, S. , and Walton, D. , 1992, “ Machining of Composite Materials—Part II: Non-Traditional Methods,” Compos. Manuf., 3(2), pp. 85–94. [CrossRef]
Ben Soussia, A. , Mkaddem, A. , and El Mansori, M. , 2014, “ Rigorous Treatment of Dry Cutting of FRP—Interface Consumption Concept: A Review,” Int. J. Mech. Sci., 83, pp. 1–29. [CrossRef]
Koplev, A. , Lystrup, A. , and Vorm, T. , 1983, “ The Cutting Process, Chips, and Cutting Forces in Machining CFRP,” Composites, 14(4), pp. 371–376. [CrossRef]
Iliescu, D. , Gehin, D. , Iordanoff, I. , Girot, F. , and Gutiérrez, M. E. , 2010, “ A Discrete Element Method for the Simulation of CFRP Cutting,” Compos. Sci. Technol., 70(1), pp. 73–80. [CrossRef]
Bhatnagar, N. , Ramakrishnan, N. , Naik, N. K. , and Komanduri, R. , 1995, “ On the Machining of Fiber Reinforced Plastic (FRP) Composite Laminates,” Int. J. Mach. Tools Manuf., 35(5), pp. 701–716. [CrossRef]
Venu Gopala Rao, G. , Mahajan, P. , and Bhatnagar, N. , 2007, “ Machining of UD-GFRP Composites Chip Formation Mechanism,” Compos. Sci. Technol., 67(11–12), pp. 2271–2281. [CrossRef]
Kim, D. , Beal, A. , and Kwon, P. , 2015, “ Effect of Tool Wear on Hole Quality in Drilling of Carbon Fiber Reinforced Plastic–Titanium Alloy Stacks Using Tungsten Carbide and Polycrystalline Diamond Tools,” ASME J. Manuf. Sci. Eng., 138(3), p. 031006. [CrossRef]
Baley, C. , 2002, “ Analysis of the Flax Fibres Tensile Behaviour and Analysis of the Tensile Stiffness Increase,” Composites, Part A, 33(7), pp. 939–948. [CrossRef]
Morvan, C. , Andème-Onzighi, C. , Girault, R. , Himmelsbach, D. S. , Driouich, A. , and Akin, D. E. , 2003, “ Building Flax Fibres: More Than One Brick in the Walls,” Plant Physiol. Biochem., 41(11–12), pp. 935–944. [CrossRef]
Hossain, R. , Islam, A. , Vuure, A. Van. , and Verpoest, I. , 2013, “ Processing Dependent Flexural Strength Variation of Jute Fiber Reinforced Epoxy Composites,” J. Eng. Appl. Sci., 8(7), pp. 513–518 http://www.arpnjournals.com/jeas/volume_07_2013.htm.
Bos, H. L. , Molenveld, K. , Teunissen, W. , van Wingerde, A. M. , and van Delft, D. R. V. , 2004, “ Compressive Behaviour of Unidirectional Flax Fibre Reinforced Composites,” J. Mater. Sci., 39(6), pp. 2159–2168. [CrossRef]
Doumbia, A. S. , Castro, M. , Jouannet, D. , Kervoëlen, A. , Falher, T. , Cauret, L. , and Bourmaud, A. , 2015, “ Flax/Polypropylene Composites for Lightened Structures: Multiscale Analysis of Process and Fibre Parameters,” Mater. Des., 87, pp. 331–341. [CrossRef]
Marrot, L. , Bourmaud, A. , Bono, P. , and Baley, C. , 2014, “ Multi-Scale Study of the Adhesion Between Flax Fibers and Biobased Thermoset Matrices,” Mater. Des., 62, pp. 47–56. [CrossRef]
Chegdani, F. , Mezghani, S. , El Mansori, M. , and Mkaddem, A. , 2015, “ Fiber Type Effect on Tribological Behavior When Cutting Natural Fiber Reinforced Plastics,” Wear, 332–333, pp. 772–779. [CrossRef]
Chegdani, F. , Mezghani, S. , and El Mansori, M. , 2015, “ Experimental Study of Coated Tools Effects in Dry Cutting of Natural Fiber Reinforced Plastics,” Surf. Coat. Technol., 284, pp. 264–272. [CrossRef]
Chegdani, F. , Mezghani, S. , and El Mansori, M. , 2016, “ On the Multiscale Tribological Signatures of the Tool Helix Angle in Profile Milling of Woven Flax Fiber Composites,” Tribol. Int., 100, pp. 132–140. [CrossRef]
Chegdani, F. , Mezghani, S. , and El Mansori, M. , 2017, “ Correlation Between Mechanical Scales and Analysis Scales of Topographic Signals Under Milling Process of Natural Fibre Composites,” J. Compos. Mater., 51(19), pp. 2743–2756. [CrossRef]
Chegdani, F. , and Mansori, M. E. , 2018, “ Mechanics of Material Removal When Cutting Natural Fiber Reinforced Thermoplastic Composites,” Polym. Test, 67, pp. 275–283. [CrossRef]
Chowdhury, S. K. , Nimbarte, A. D. , Jaridi, M. , and Creese, R. C. , 2013, “ Discrete Wavelet Transform Analysis of Surface Electromyography for the Fatigue Assessment of Neck and Shoulder Muscles,” J. Electromyogr. Kinesiol., 23(5), pp. 995–1003. [CrossRef] [PubMed]
Qiu, Z. , Lee, C.-M. , Xu, Z. H. , and Sui, L. N. , 2016, “ A Multi-Resolution Filtered-x LMS Algorithm Based on Discrete Wavelet Transform for Active Noise Control,” Mech. Syst. Signal Process, 66–67, pp. 458–469. [CrossRef]
Peng, Z. K. , Jackson, M. R. , Rongong, J. A. , Chu, F. L. , and Parkin, R. M. , 2009, “ On the Energy Leakage of Discrete Wavelet Transform,” Mech. Syst. Signal Process, 23(2), pp. 330–343. [CrossRef]
Chen, B. , Zhang, Z. , Sun, C. , Li, B. , Zi, Y. , and He, Z. , 2012, “ Fault Feature Extraction of Gearbox by Using Overcomplete Rational Dilation Discrete Wavelet Transform on Signals Measured From Vibration Sensors,” Mech. Syst. Signal Process, 33, pp. 275–298. [CrossRef]
Katunin, A. , 2011, “ Damage Identification in Composite Plates Using Two-Dimensional B-Spline Wavelets,” Mech. Syst. Signal Process, 25(8), pp. 3153–3167. [CrossRef]
Dick, A. J. , Phan, Q. M. , Foley, J. R. , and Spanos, P. D. , 2012, “ Calculating Scaling Function Coefficients From System Response Data for New Discrete Wavelet Families,” Mech. Syst. Signal Process, 27, pp. 362–369. [CrossRef]
Chen, X. , Raja, J. , and Simanapalli, S. , 1995, “ Multi-Scale Analysis of Engineering Surfaces,” Int. J. Mach. Tools Manuf., 35(2), pp. 231–238. [CrossRef]
Daubechies, I. , 1992, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA.
El Mansori, M. , Mezghani, S. , Sabri, L. , and Zahouani, H. , 2010, “ On Concept of Process Signature in Analysis of Multistage Surface Formation,” Surf. Eng., 26(3), pp. 216–223. [CrossRef]
Sweldens, W. , 1996, “ The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets,” Appl. Comput. Harmon. Anal., 3(2), pp. 186–200. [CrossRef]
Jiang, X. Q. , Blunt, L. , and Stout, K. J. , 2000, “ Development of a Lifting Wavelet Representation for Surface Characterization,” Proc. R. Soc. A Math. Phys. Eng. Sci., 456(2001), pp. 2283–2313. [CrossRef]
Daubechies, I. , and Sweldens, W. , 1998, “ Factoring Wavelet Transforms Into Lifting Steps,” J. Fourier Anal. Appl., 4(3), pp. 247–269. [CrossRef]
Chegdani, F. , Wang, Z. , El Mansori, M. , and Bukkapatnam, S. T. S. , 2018, “ Multiscale Tribo-Mechanical Analysis of Natural Fiber Composites for Manufacturing Applications,” Tribol. Int., 122, pp. 143–150. [CrossRef]
Chegdani, F. , El Mansori, M. , Mezghani, S. , and Montagne, A. , 2017, “ Scale Effect on Tribo-Mechanical Behavior of Vegetal Fibers in Reinforced Bio-Composite Materials,” Compos. Sci. Technol., 150, pp. 87–94. [CrossRef]
JEC, 2015, “ Flaxpreg: A Composite Reinforced With Very Long Flax Fibres,” JEC Website, Paris, France, accessed Aug. 30, 2017, http://www.jeccomposites.com/knowledge/international-composites-news/flaxpreg-composite-reinforced-very-long-flax-fibres

Figures

Grahic Jump Location
Fig. 4

Schematization of a sandwich structure

Grahic Jump Location
Fig. 5

Flaxpreg sandwich-structured composite: (a) three-dimensional (3D) view and (b) profile view

Grahic Jump Location
Fig. 3

(a) Multiscale machined surface roughness of UD flax/PP composites for different removed chip thickness values, Adapted from [30]. (b) Multiscale machined surface roughness of BD flax/PP composites for different tool helix angle values, Adapted from [31].

Grahic Jump Location
Fig. 2

(a) Multiscale process signature of fiber type effect on machined surfaces of NFRP [29,32]. (b) Mean process signature in function of the cutting feed for each fiber type. (c) Mean process signature in function of the fiber stiffness for each cutting feed, Adapted from [29,32].

Grahic Jump Location
Fig. 8

(a) Flaxpreg workpiece. (b) SEM image of Flaxpreg composite skin showing the flax fibers bundles size.

Grahic Jump Location
Fig. 1

Schematic depiction of the multiscale plant fiber structure

Grahic Jump Location
Fig. 6

Schematic depiction of the milling configuration used for the industrial application

Grahic Jump Location
Fig. 7

Clamping mold of the sandwich-structured part fixed on the table of the computer numerical control five axes machine: (a) before closing the clamping board and (b) after closing the clamping board

Grahic Jump Location
Fig. 9

Scanning electron microscope images of machined surfaces of the flax composite skins in Flaxpreg for different cutting conditions

Grahic Jump Location
Fig. 10

Typical 3D topographic image of machined surfaces of the flax composite skins in Flaxpreg

Grahic Jump Location
Fig. 11

Three-dimensional multiscale surface roughness at the pertinent scale for the machined surfaces of the flax composite skins in Flaxpreg: (a) for different cutting speed values and (b) for different feed values

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In