0
Review Article

Is all chatter bad?

[+] Author and Article Information
Andrew Honeycutt

University of North Carolina at Charlotte, Charlotte, NC
ahoney15@uncc.edu

Tony Schmitz

University of North Carolina at Charlotte, Charlotte, NC
tony.schmitz@uncc.edu

1Corresponding author.

ASME doi:10.1115/1.4041325 History: Received January 16, 2018; Revised August 27, 2018

Abstract

This review paper presents a comprehensive analysis of period-n (i.e., motion that repeats every n tooth periods) bifurcations in milling. Although period-n bifurcations in milling were only first reported experimentally in 1998, multiple researchers have since used both simulation and experiment to study their unique behavior in milling. To complement this work, the authors of this paper completed a three year study to answer the fundamental question "Is all chatter bad", where time-domain simulation and experiments were combined to: predict and verify the presence of period-2 to period-15 bifurcations; apply subharmonic (periodic) sampling strategies to the automated identification of bifurcation type; establish the sensitivity of bifurcation behavior to the system dynamics, including natural frequency and damping; and predict and verify surface location error and surface roughness under both stable and period-2 bifurcation conditions. These results are summarized. To aid in parameter selection that yields period-n behavior, graphical tools including Poincaré maps, bifurcation diagrams, and stability maps are presented.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In