0
Research Papers

Sustainable Fabrication of Glass Nanostructures Using Infrared Transparent Mold Assisted by CO2 Laser Scanning Irradiation

[+] Author and Article Information
Mohd Zairulnizam Bin Mohd Zawawi

School of Mechanical Engineering,
National Center for Optically-Assisted
Mechanical Systems,
Yonsei University,
50, Yonsei-ro,
Seodaemun-gu,
Seoul 03722, Korea
e-mail: zairulnizam@yonsei.ac.kr

Taekyung Kim

National Center for Optically-Assisted
Mechanical Systems,
Yonsei University,
50, Yonsei-ro,
Seodaemun-gu,
Seoul, 03722, Korea
e-mail: scimatar@yonsei.ac.kr

Myungki Jung

National Center for Optically-Assisted
Mechanical Systems,
Yonsei University,
50, Yonsei-ro,
Seodaemun-gu,
Seoul 03722, Korea
e-mail: frost@yonsei.ac.kr

Jaehun Im

School of Mechanical Engineering,
National Center for Optically-Assisted
Mechanical Systems,
Yonsei University,
50, Yonsei-ro,
Seodaemun-gu,
Seoul 03722, Korea
e-mail: iamjh@yonsei.ac.kr

Shinill Kang

School of Mechanical Engineering,
National Center for Optically-Assisted
Mechanical Systems,
Yonsei University,
50, Yonsei-ro,
Seodaemun-gu,
Seoul 03722, Korea
e-mail: snlkang@yonsei.ac.kr

1M. Z. Bin Mohd Zawawi and T. Kim equally contributed to this work.

2Corresponding author.

Manuscript received April 23, 2018; final manuscript received August 2, 2018; published online September 21, 2018. Assoc. Editor: Donggang Yao.

J. Manuf. Sci. Eng 140(12), 121005 (Sep 21, 2018) (9 pages) Paper No: MANU-18-1268; doi: 10.1115/1.4041181 History: Received April 23, 2018; Revised August 02, 2018

Direct thermal imprinting of nanostructures on glass substrates is reliable when manufacturing net-shaped glass devices with various surface functions. However, several problems are recognized, including a long thermal cycle, tedious optimization, difficulties in ensuring high level replication fidelity, and unnecessary thermal deformation of the glass substrate. Here, we describe a more sustainable and energy efficient method for direct thermal imprinting of nanostructures onto glass substrates; we use silicon mold transparent to infrared between 2.5 and 25 μm in wavelength combined with CO2 laser scanning irradiation. The glass strongly absorbed the 10.6 μm wavelength irradiation, triggering substantial heating of a thin layer on the glass surface, which significantly enhanced the filling of pressed glass material into nanostructured silicon mold cavities. For comparison, we conducted conventional direct glass thermal imprinting experiments, further emphasizing the advantages of our new method, which outperformed conventional methods. The thermal mass cycle was shorter and the imprint pattern quality and yield, higher. Our method is sustainable, allowing more rapid scalable fabrication of glass nanostructures using less energy without sacrificing the quality and productivity of the fabricated devices.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yi, A. Y. , Chen, Y. , Klocke, F. , Pongs, G. , Demmer, A. , Grewell, D. , and Benatar, A. , 2006, “ A High Volume Precision Compression Molding Process of Glass Diffractive Optics by Use of a Micromachined Fused Silica Wafer Mold and Low Tg Optical Glass,” J. Micromech. Microeng., 16(10), p. 2000. [CrossRef]
Tamura, T. , Umetani, M. , Yamada, K. , Tanaka, Y. , Kintaka, K. , Kasa, H. , and Nishii, J. , 2010, “ Fabrication of Antireflective Subwavelength Structure on Spherical Glass Surface Using Imprinting Process,” Appl. Phys. Express, 3(11), p. 112501. [CrossRef]
Palanisamy, B. , Han, S.-Y. , and Paul, B. K. , 2016, “ A Multilayer Strategy for Improving the Abrasion Resistance of Silica Nanoparticle-Based Motheye Antireflective Coatings on Glass,” ASME J. Micro- Nano-Manuf., 4(3), p. 031005. [CrossRef]
Huang, Y. , Liu, L. , Johnson, M. , Hillier, A. C. , and Lu, M. , 2016, “ One-Step Sol–Gel Imprint Lithography for Guided-Mode Resonance Structures,” Nanotechnology, 27(9), p. 095302. [CrossRef] [PubMed]
Wang, F. , Chen, Y. , Klocke, F. , Pongs, G. , and Yi, A. Y. , 2009, “ Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses,” ASME J. Manuf. Sci. Eng., 131(1), p. 011014. [CrossRef]
Firestone, G. C. , and Yi, A. Y. , 2005, “ Precision Compression Molding of Glass Microlenses and Microlens Arrays—An Experimental Study,” Appl. Optics, 44(29), pp. 6115–6122. [CrossRef]
Choi, W. , Lee, J. , Kim, W.-B. , Min, B.-K. , Kang, S. , and Lee, S.-J. , 2004, “ Design and Fabrication of Tungsten Carbide Mould With Micro Patterns Imprinted by Micro Lithography,” J. Micromech. Microeng., 14(11), pp. 1519–1525. [CrossRef]
Chen, Q. , Chen, Q. , and Maccioni, G. , 2013, “ Fabrication of Microfluidics Structures on Different Glasses by Simplified Imprinting Technique,” Curr. Appl. Phys., 13(1), pp. 256–261. [CrossRef]
Billo, R. E. , Wilson, P. A. , Priest, J. W. , Romero-Ortega, M. , Brunskill, S. R. , and Keens, D. , 2014, “ Slump Molding of Microchannel Arrays in Soda-Lime Glass for Bioanalytical Device Development Richard,” ASME J. Micro- Nano-Manuf., 2(4), p. 041006. [CrossRef]
Yu, E. , Kim, S.-C. , Lee, H. J. , Oh, K. H. , and Moon, M.-W. , 2015, “ Extreme Wettability of Nanostructured Glass Fabricated by Non-Lithographic, Anisotropic Etching,” Sci. Reports, 5(1), p. 9362. [CrossRef]
Wang, E. , and Zhao, Y. , 2014, “ Etching of Nanostructures on Soda-Lime Glass,” Opt. Lett., 39(13), pp. 3748–3751. [CrossRef] [PubMed]
Ryu, H. , Kim, P. K. , and Lim, G. , 2012, “ Advanced Glass Etching Method Exhibiting the Controllable Etch Stop Using Metal Etchant,” J. Micromech. Microeng., 22(12), p. 125010. [CrossRef]
Nieto, D. , Flores-Arias, M. T. , O'Connor, G. M. , and Gomez-Reino, C. , 2010, “ Laser Direct-Write Technique for Fabricating Microlens Arrays on Soda-Lime Glass With a Nd: YVO 4 Laser,” Appl. Opt., 49(26), pp. 4979–4983. [CrossRef] [PubMed]
Zheng, Z.-P. , Cheng, W.-H. , Huang, F.-Y. , and Yan, B.-H. , 2007, “ 3D Microstructuring of Pyrex Glass Using the Electrochemical Discharge Machining Process,” J. Micromech. Microeng., 17(5), p. 960. [CrossRef]
Yi, A. Y. , and Jain, A. , 2005, “ Compression Molding of Aspherical Glass Lenses–a Combined Experimental and Numerical Analysis,” J. Am. Ceram. Soc., 88(3), pp. 579–586. [CrossRef]
Vu, A.-T. , Kreilkamp, H. , Dambon, O. , and Klocke, F. , “ Nonisothermal Glass Molding for the Cost-Efficient Production of Precision Freeform Optics,” Opt. Eng., 55(7), p. 071207. [CrossRef]
Chen, Y. , Yi, A. Y. , Su, L. , Klocke, F. , and Pongs, G. , 2008, “ Numerical Simulation and Experimental Study of Residual Stresses in Compression Molding of Precision Glass Optical Components,” ASME J. Manuf. Sci. Eng., 130(5), p. 051012. [CrossRef]
Hirai, Y. , Kanakugi, K. , Yamaguchi, T. , Yao, K. , Kitagawa, S. , and Tanaka, Y. , 2003, “ Fine Pattern Fabrication on Glass Surface by Imprint Lithography,” Microelectron. Eng., 67, pp. 237–244. [CrossRef]
Ishihara, K. , Fujita, M. , Matsubara, I. , Asano, T. , Noda, S. , Ohata, H. , Hirasawa, A. , Nakada, H. , and Shimoji, N. , 2007, “ Organic Light-Emitting Diodes With Photonic Crystals on Glass Substrate Fabricated by Nanoimprint Lithography,” Appl. Phys. Lett., 90(11), p. 111114. [CrossRef]
Yamada, K. , Umetani, M. , Tamura, T. , Tanaka, Y. , Kasa, H. , and Nishii, J. , 2009, “ Antireflective Structure Imprinted on the Surface of Optical Glass by SiC Mold,” Appl. Surf. Sci., 255(7), pp. 4267–4270. [CrossRef]
Prater, K. , Dukwen, J. , Scharf, T. , Herzig, H. P. , Plöger, S. , and Hermerschmidt, A. , 2016, “ Micro-Structuring of Glassy Carbon for Precision Glass Molding of Binary Diffractive Optical Elements,” Opt. Mater. Express, 6(11), pp. 3407–3416. [CrossRef]
Takagi, H. , Miyazawa, S.-I. , Takahashi, M. , and Maeda, R. , 2008, “ Electrostatic Imprint Process for Glass,” Appl. Phys. Express, 1(2), p. 024003. [CrossRef]
Li, H. , He, P. , Yu, J. , Lee, L. J. , and Yi, A. Y. , 2015, “ Localized Rapid Heating Process for Precision Chalcogenide Glass Molding,” Opt. Lasers Eng., 73, pp. 62–68. [CrossRef]
Chou, S. Y. , Keimel, C. , and Gu, J. , 2002, “ Ultrafast and Direct Imprint of Nanostructures in Silicon,” Nature, 417(6891), p. 835. [CrossRef] [PubMed]
Xia, Q. , Keimel, C. , Ge, H. , Yu, Z. , Wu, W. , and Chou, S. Y. , 2003, “ Ultrafast Patterning of Nanostructures in Polymers Using Laser Assisted Nanoimprint Lithography,” Appl. Phys. Lett., 83(21), pp. 4417–4419. [CrossRef]
Cui, B. , Keimel, C. , and Chou, S. Y. , 2009, “ Ultrafast Direct Imprinting of Nanostructures in Metals by Pulsed Laser Melting,” Nanotechnology, 21(4), p. 045303. [CrossRef] [PubMed]
Grigaliūnas, V. , Tamulevičius, S. , Tomašiūnas, R. , Kopustinskas, V. , Guobien, A. , and Jucius, D. , 2004, “ Laser Pulse Assisted Nanoimprint Lithography,” Thin Solid Films, 453, pp. 13–15. [CrossRef]
Grigaliūnas, V. , Tamulevičius, S. , Muehlberger, M. , Jucius, D. , Guobienė, A. , Kopustinskas, V. , and Gudonytė, A. , 2006, “ Nanoimprint Lithography Using IR Laser Irradiation,” Appl. Surf. Sci., 253(2), pp. 646–650. [CrossRef]
Chen, C.-H. , Liu, C.-P. , Lee, Y.-C. , Hsiao, F.-B. , Chiu, C.-Y. , Chung, M.-H. , and Chiang, M.-H. , 2006, “ IR Laser-Assisted Micro/Nano-Imprinting,” J. Micromech. Microeng., 16(8), p. 1463. [CrossRef]
Nagato, K. , Takahashi, K. , Sato, T. , Choi, J. , Hamaguchi, T. , and Nakao, M. , 2014, “ Laser-Assisted Replication of Large-Area Nanostructures,” J. Mater. Process. Technol., 214(11), pp. 2444–2449. [CrossRef]
Komori, M. , Uchiyama, H. , Takebe, H. , Kusuura, T. , Kobayashi, K. , Kuwahara, H. , and Tsuchiya, T. , 2008, “ Micro/Nanoimprinting of Glass Under High Temperature Using a CVD Diamond Mold,” J. Micromech. Microeng., 18(6), p. 065013. [CrossRef]
Kim, M. , Changsu, P. , Je, S. , Jang, H. , Joo, C. , and Kang, S. , 2018, “ Real-Time Compensation of Simultaneous Errors Induced by Optical Phase Difference and Substrate Motion in Scanning Beam Laser Interference Lithography System,” IEEE/ASME Trans. Mechatronics, 23(4), pp. 1491–1500. [CrossRef]
Hung, Y. M. , Lu, Y. J. , and Sung, C. K. , 2009, “ Microstructure Patterning on Glass Substrate by Imprinting Process,” Microelectron. Eng., 86(4–6), pp. 577–582. [CrossRef]
He, P. , Li, L. , Yu, J. , Huang, W. , Yen, Y.-C. , Lee, L. J. , and Allen, Y. Y. , 2013, “ Graphene-Coated Si Mold for Precision Glass Optics Molding,” Opt. Lett., 38(14), pp. 2625–2628. [CrossRef] [PubMed]
Clarke, G. A. , Xie, Y. , Eldridge, J. E. , and Parsons, R. R. , 1996, “ The Infrared Properties of Magnetron-Sputtered Diamond-like Thin Films,” Thin Solid Films, 280(1–2), pp. 130–135. [CrossRef]
Sumita Optical Glass Inc., 2016, “ Optics Glass Data Book,” Sumita Optical Glass, Saitama, Japan, accessed Aug. 30, 2018, http://www.sumita-opt.co.jp/data/glassdata.pdf?1530008754
Liu, X. , Zhou, T. , Zhang, L. , Zhou, W. , Yu, J. , Lee, L. J. , and Allen, Y. Y. , 2018, “ Simulation and Measurement of Refractive Index Variation in Localized Rapid Heating Molding for Polymer Optics,” ASME J. Manuf. Sci. Eng., 140(1), p. 011004. [CrossRef]
Doualle, T. , Gallais, L. , Cormont, P. , Hébert, D. , Combis, P. , and Rullier, J.-L. , 2016, “ Thermo-Mechanical Simulations of CO2 Laser–Fused Silica Interactions,” J. Appl. Phys., 119(11), p. 113106. [CrossRef]
Pletcher, R. H. , Tannehill, J. C. , and Anderson, D. , 2012, Computational Fluid Mechanics and Heat Transfer, CRC Press, Boca Raton, FL.
Saotome, Y. , Imai, K. , and Sawanobori, N. , 2003, “ Microformability of Optical Glasses for Precision Molding,” J. Mater. Process. Technol., 140(1–3), pp. 379–384. [CrossRef]
Boyd, I. W. , Binnie, T. D. , Wilson, J. I. B. , and Colles, M. J. , 1984, “ Absorption of Infrared Radiation in Silicon,” J. Appl. Phys., 55(8), pp. 3061–3063. [CrossRef]
Gallais, L. , Cormont, P. , and Rullier, J.-L. , 2009, “ Investigation of Stress Induced by CO2 Laser Processing of Fused Silica Optics for Laser Damage Growth Mitigation,” Opt. Express, 17(26), pp. 23488–23501. [CrossRef] [PubMed]
Uhlmann, E. , Peukert, B. , Thom, S. , Prasol, L. , Furstmann, P. , Sammler, F. , and Richarz, S. , 2016, “ Solutions for Sustainable Machining,” ASME J. Manuf. Sci. Eng., 139(5), p. 051009. [CrossRef]
Pan, D. , Guan, D. , Jen, T. , and Yuan, C. , 2016, “ Atomic Layer Deposition Process Modeling and Experimental Investigation for Sustainable Manufacturing of Nano Thin Films,” ASME J. Manuf. Sci. Eng., 138(10), p. 101010. [CrossRef]
Malhotra, R. , Strano, M. , and Chu, E. W. , 2016, “ Special Issue: Innovations in Materials Forming Processes,” ASME J. Manuf. Sci. Eng., 138(9), p. 090301. [CrossRef]
Zhang, M. , Jun Chen, C. , Brandal, G. , Bian, D. , and Lawrence Yao, Y. Y. , 2015, “ Experimental and Numerical Investigation of Laser Forming of Closed-Cell Aluminum Foam,” ASME J. Manuf. Sci. Eng., 138(2), p. 021006. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of (a) conventional direct glass thermal imprinting and (b) glass imprinting using CO2 laser irradiation through IR transparent mold

Grahic Jump Location
Fig. 2

The transmittance profiles of the silicon mold and the optical glass K-PG375

Grahic Jump Location
Fig. 3

Schematic of the CO2 laser-assisted scanning process: (a) system setup and (b) method of laser beam scanning

Grahic Jump Location
Fig. 4

(a) Photographs of imprinted glass samples from CO2 laser-assisted scanning process (left) with AFM pattern height measuring points across 100 mm2 of glass imprinted area and conventional imprinting process (right), a SEM image, an AFM 3D profile and an AFM 2D cross section of (b) silicon mold (c) imprinted glass from CO2 laser-assisted scanning process (contact imprinting time: 9 s), and (d) imprinted glass from conventional imprinting process (contact imprinting time: 1200 s)

Grahic Jump Location
Fig. 5

(a) AFM measurement result of the imprinted nanograting surface roughness (b) stylus profilometer measurement lines and AFM measurement points for the CO2 laser scanning imprinted bulk glass (c) Surface roughness measurement of the raw bulk glass and the imprinted bulk glass and optical microscope measurement of (d) raw glass thickness, (e) CO2 laser scanning-assisted imprinted glass thickness, and (f) conventional imprinting glass thickness

Grahic Jump Location
Fig. 6

Comparison of temperatures history profiles of the glass substrate and silicon as functions of time based on simulations and experiments

Grahic Jump Location
Fig. 7

Simulated temperature distributions at various glass depths at a constant laser power of 30 W for 70 ms

Grahic Jump Location
Fig. 8

Comparison of (a) thermal cycle time and (b) heating energy consumption per cycle between proposed method and conventional method

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In