Research Papers

Analysis of the Weld Seam Morphology of Polypropylene in Laser Transmission Welding

[+] Author and Article Information
Bastian Geißler

Bayerisches Laserzentrum GmbH,
Konrad-Zuse-Str. 2-6,
Erlangen 91052, Germany
e-mail: b.geissler@blz.org

Tobias Laumer

Bayerisches Laserzentrum GmbH,
Konrad-Zuse-Str. 2-6,
Erlangen 91052, Germany;
Erlangen Graduate School in Advanced
Optical Technologies (SAOT),
Erlangen 91052, Germany

Andrea Wübbeke, Volker Schöppner

Polymer Engineering,
University of Paderborn,
Paderborn 33098, Germany

Thomas Frick

Bayerisches Laserzentrum GmbH,
Konrad-Zuse-Str. 2-6,
Erlangen 91052, Germany

Michael Schmidt

Bayerisches Laserzentrum GmbH,
Konrad-Zuse-Str. 2-6,
Erlangen 91052, Germany;
Erlangen Graduate School in Advanced
Optical Technologies (SAOT),
Erlangen 91052, Germany;
Erlangen-Nürnberg (FAU),
Institute of Photonic Technologies,
Erlangen 91052, Germany

Manuscript received May 7, 2018; final manuscript received July 12, 2018; published online September 7, 2018. Assoc. Editor: Martine Dubé.

J. Manuf. Sci. Eng 140(11), 111017 (Sep 07, 2018) (7 pages) Paper No: MANU-18-1310; doi: 10.1115/1.4040876 History: Received May 07, 2018; Revised July 12, 2018

Laser transmission welding is a well-known joining technology for welding thermoplastics. Although the process is already used industrially, fundamental process-structure-property relationships are not fully understood and are therefore the subject of current research. One aspect of these mentioned process-structure-property relationships is the interaction between the temperature field during the welding process, the weld seam morphology of semi-crystalline thermoplastics, and the weld seam strength. In this study, the influence of the line energy on the weld seam morphology of polypropylenes is analyzed. For this purpose, the size of spherulites in the weld seam is investigated, as well as different occurring phases of polypropylene (α- and β-phase). It is shown that both the spherulite size of the α-phase and the amount of β-phase increase with increasing line energy. For the explanation and discussion of the results, a temperature-dependent thermal simulation model is used to derive characteristic attributes of the temperature field (maximum temperatures, cooling rates, temperature gradients).

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Devrient, M. , Kern, M. , Jaeschke, P. , Stute, U. , Haferkamp, H. , and Schmidt, M. , 2013, “Experimental Investigation of Laser Transmission Welding of Thermoplastics With Part-Adapted Temperature Fields,” Phys. Procedia, 41, pp. 59–69. [CrossRef]
Hänsch, D. , 2001, “Die Optischen Eigenschaften Von Polymeren Und Ihre Bedeutung Für Das Durchstrahlschweißen Mit Diodenlaser,” Doctoral dissertation, Universität Aachen, Aachen, Germany.
Russek, U. , 2006, “Prozesstechnische Aspekte Des Laserdurchstrahlschweißens Von Thermoplasten,” Doctoral dissertation, Universität Aachen, Aachen, Germany.
Hofmann, A. , 2006, “Hybrides Laserdurchstrahlschweißen Von Kunststoffen,” Doctoral dissertation, Universität Erlangen-Nürnberg, Erlangen, Germany
Acherjee, B. , Kuar, A. S. , Mitra, S. , and Misra, D. , 2010, “Selection of Process Parameters for Optimizing the Weld Strength in Laser Transmission Welding of Acrylics,” J. Eng. Manuf., 224(10), pp. 1529–1536. [CrossRef]
Juhl, T. B. , Christiansen, J. C. , and Jensen, E. A. , 2013, “Investigation on High Strength Laser Welds of Polypropylene and High-Density Polyethylene,” J. Appl. Polym. Sci., 129 (5), pp. 2679–2685. [CrossRef]
Frick, T. , 2007, “Untersuchung Der Prozessbestimmenden Strahl-Stoff-Wechselwirkungen Beim Laserstrahlschweißen Von Kunststoffen,” Doctoral dissertation, Universität Erlangen-Nürnberg, Erlangen, Germany.
Geiger, M. , Frick, T. , and Schmidt, M. , 2009, “Optical Properties of Plastics and Their Role for the Modelling of the Laser Transmission Welding Process,” Prod. Eng., 3(1), pp. 49–55. [CrossRef]
Schmailzl, A. , Hierl, S. , and Schmidt, M. , 2016, “Gap-Bridging During Quasi-Simultaneous Laser Transmission Welding,” Phys. Procedia, 83, pp. 1073–1082. [CrossRef]
Herzog, D. , Fargas, M. , Meier, O. , and von Busse, A. , 2007, “Process Monitoring System for Laser Transmission Welding of Plastics Using Direct Visualization of the Weld Seam,” Proc. SPIE 6530 , pp. 65300A-1–65300A-8.
Jaeschke, P. , Herzog, D. , and Hustedt, M. , 2008, “Thermography Enhances the Capabilities of Laser Transmission Welding,” InfraMation, Reno, Nevada, Nov. 3–7, pp. 209–220.
Wippo, V. , Devrient, M. , Kern, M. , Jaeschke, P. , Frick, T. , Stute, U. , Schmidt, M. , and Haferkamp, H. , 2012, “Evaluation of a Pyrometric-Based Temperature Measuring Process for the Laser Transmission Welding,” Phys. Procedia, 39, pp. 128–136. [CrossRef]
Acherjee, B. , Kuar, A. S. , Mitra, S. , Misra, D. , and Acharyya, S. , 2012, “Experimental Investigation on Laser Transmission Welding of PMMA to ABS via Response Surface Modeling,” Opt. Laser Technol., 44(5), pp. 1372–1383. [CrossRef]
Kaiser, W. , 2006, Kunststoffchemie Für Ingenieure, Carl Hanser Verlag, München Wien, Munich, Germany.
Romankiewicz, A. , Sterzynski, T. , and Brostow, W. , 2004, “Structural Characterization of α- and β-Nucleated Isotactic Polypropylene,” Polym. Int., 53(12), pp. 2086–2091. [CrossRef]
Koltzenburg, S. , Maskos, M. , and Nuyken, O. , : 2014, Polymere: Synthese, Eigenschaften Und Anwendungen, Springer Verlag, Berlin.
Tjordeman, P. , Robert, C. , Marin, G. , and Gerard, P. , 2001, “The Effect of α, β Crystalline Structure on the Mechanical Properties of Polypropylene,” Eur. Phys. J. E, 4(4), pp. 459–465. [CrossRef]
Ehrenstein, G. W. , 2011, Polymer Werkstoffe: Struktur – Eigenschaften – Anwendungen, 3, Auflage, Hanser Verlag, München, Germany.
Ohlberg, S. M. , Roth, J. , and Raff, R. A. V. , 1959, “Relationship Between Impact Strength and Spherulite Growth in Linear Polyethylene,” Appl. Polym., 1(1), pp. 114–120. [CrossRef]
Wright, D. G. M. , Dunk, R. , Bouvart, D. , and Autran, M. , 1988, “The Effect of Crystallinity on the Properties of Injection Moulded Polypropylene and Polyacetal,” Polymer, 29(5), pp. 793–796. [CrossRef]
Perkins, W. G. , 1999, “Polymer Toughness Impact Resistance,” Polym. Eng. Sci., 39(12), pp. 2445–2460. [CrossRef]
Remaly, L. S. , 1970, “Time-Dependent Effect of Spherulite Size on the Tensile Behavior of Polypropylene,” J. Appl. Polym. Sci., 14(7), pp. 1871–1877. [CrossRef]
Way, J. L. , Atkinson, J. R. , and Nutting, J. , 1974, “The Effect of Spherulite Size on the Fracture Morphology of Polypropylene,” J. Mater. Sci., 9(2), pp. 293–299. [CrossRef]
van Erp, T. B. , Balzano, L. , and Peters, G. W. M. , 2012, “Oriented Gamma Phase in Isotactic Polypropylene Homopolymer,” ACS Macro Lett., 1(5), pp. 618–622. [CrossRef]
Raab, M. , Scudla, J. , and Kolarik, J. , 2004, “The Effect of Specific Nucleation on Tensile Mechanical Behaviour of Isotactic Polypropylene,” Eur. Polym. J., 40(7), pp. 1317–1323. [CrossRef]
Varga, J. , 1992, “Supermolecular Structure of Isotactic Polypropylene,” J. Mater. Sci., 27(10), pp. 2557–2579. [CrossRef]
Varga, J. , 2002, “β-Modification of Isotactic Polypropylene: Preparation, Structure, Processing, Properties and Applications,” J. Macromol. Sci., Part B—Phys., 41(4–6), pp. 1121–1171. [CrossRef]
Varga, J. , 1995, “Crystallization, Melting and Supermolecular Structure of Isotactic Polypropylene,” Polypropylene: Structure, Blends and Composites, J. Karger-Kocsis , ed., Vol. 1, Chapman & Hall, London, pp. 56–115.
Brückner, S. , Meille, S. V. , Petraccone, V. , and Pirozzi, B. , 1991, “Polymorphism in Isotactic Polypropylene,” Prog. Polym. Sci., 16(2–3), pp. 361–404. [CrossRef]
Lotz, B. , 1991, “Single Crystals of γ Phase Isotactic Polypropylene: Combined Diffraction and Morphological Support for a Structure With Non-Parallel Chains,” Polymer, 32(16), pp. 2902–2910. [CrossRef]
De Rosa, C. , De Rosa, C. , Auriemma, F. , de Ballesteros, O. R. , Resconi, L. , and Camurati, I. , 2007, “Crystallization Behavior of Isotactic Propylene−Ethylene and Propylene−Butene Copolymers:  Effect of Comonomers Versus Stereodefects on Crystallization Properties of Isotactic Polypropylene,” Macromolecules, 40(18), pp. 6600–6616. [CrossRef]
Klein, M. , 2001, “Laserschweißen Von Kunststoffen in Der Mikrotechnik,” Doctoral dissertation, Universität Aachen, Aachen, Germany.
Piccarolo, S. , 1992, “Morphological Changes in Isotactic Polypropylene as a Function of Cooling Rate,” J. Macromol. Sci., Part B: Phys., 31(4), pp. 501–511. [CrossRef]
Reiter, G. , 2007, Progress in Understanding of Polymer Crystallization, Springer Verlag, Berlin.
Geißler, B. , Laumer, T. , Wübbeke, A. , Lackemeyer, P. , Frick, T. , Schöppner, V. , and Schmidt, M. , 2017, “Analysis of the Interaction Between the Temperature Field and the Weld Seam Morphology in Laser Transmission Welding by Using Two Different Discrete Laser Wavelengths,” 34st International Congress on Applications of Lasers and Electro-Optics (ICALEO 2017), Atlanta, Georgia, Oct. 22–26.
Bonefeld, D. , 2012, “Eigenspannungen, Spaltüberbrückbarkeit Und Strahloszillation Beim Laserdurchstrahlschweißen,” Doctoral dissertation, Universität Paderborn, Paderborn, Germany.
Mayboudi, L. S. , 2008, “Heat Transfer Modelling and Thermal Imaging Experiments in Laser Transmission Welding of Thermoplastics,” Doctoral dissertation, Queen's University, Kingston, ON, Canada. https://qspace.library.queensu.ca/handle/1974/1551


Grahic Jump Location
Fig. 4

Schematic of polarization microscopy with an exemplary thin section of the weld seam and the measurement area

Grahic Jump Location
Fig. 3

Experimental setup

Grahic Jump Location
Fig. 2

Absorbing and transparent joining partner

Grahic Jump Location
Fig. 8

Dependence of the spherulite size (α-phase) on the line energy

Grahic Jump Location
Fig. 9

Temperature curves for different line energies and corresponding cooling rates in the crystallization range

Grahic Jump Location
Fig. 1

Principle of laser transmission welding

Grahic Jump Location
Fig. 5

DSC measurement curve of iPP with 0.2 wt % c.b.

Grahic Jump Location
Fig. 6

Analysis of the weld seam morphology (parameter no. 3) by determining the size of α-spherulites and the number of β-spherulites

Grahic Jump Location
Fig. 7

Comparison of the spherulite diameter (α-phase) of the base material with the weld seam in the investigated parameter range

Grahic Jump Location
Fig. 14

Dependence of lateral temperature gradient and maximum temperature on the line energy

Grahic Jump Location
Fig. 10

Dependence of the cooling rate on the line energy

Grahic Jump Location
Fig. 11

Comparison of spherulite size dependent on cooling rate with study from Piccarolo et al. [33]

Grahic Jump Location
Fig. 12

Dependence of the amount of β-spherulites per mm2 on the line energy

Grahic Jump Location
Fig. 13

Temperature distribution laterally to the weld seam for different line energies



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In