Shapiro,
A.
,
Borgonia,
J.
,
Chen,
Q.
,
Dillon,
R.
,
McEnerney,
B.
,
Polit-Casillas,
R.
, and
Soloway, L.
, 2016, “
Additive Manufacturing for Aerospace Flight Applications,” J. Spacecr. Rockets,
53(5), pp. 952–959.

[CrossRef]
Zhu,
J.-H.
,
Zhang,
W.-H.
, and
Xia,
L.
, 2016, “
Topology Optimization in Aircraft and Aerospace Structures Design,” Arch. Comput. Methods Eng.,
23(4), pp. 595–622.

[CrossRef]
Giannatsis,
J.
, and
Dedoussis,
V.
, 2009, “
Additive Fabrication Technologies Applied to Medicine and Health Care: A Review,” Int. J. Adv. Manuf. Technol.,
40(1–2), pp. 116–127.

[CrossRef]
Thompson,
S. M.
,
Aspin,
Z. S.
,
Shamsaei,
N.
,
Elwany,
A.
, and
Bian,
L.
, 2015, “
Additive Manufacturing of Heat Exchangers: A Case Study on a Multi-Layered Ti–6Al–4V Oscillating Heat Pipe,” Addit. Manuf.,
8), pp. 163–174.

[CrossRef]
Rosen,
D. W.
, 2007, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures,” Comput.-Aided Des. Appl.,
4(5), pp. 585–594.

[CrossRef]
Murr,
L.
,
Gaytan,
S.
,
Medina,
F.
,
Lopez,
H.
,
Martinez,
E.
,
Machado,
B.
,
Hernandez, D.
,
Martinez, L.
,
Lopez, M.
, and
Wicker, R.
, 2010, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays,” Philos. Trans. R. Soc. London A,
368(1917), pp. 1999–2032.

[CrossRef]
Cheng,
L.
,
Zhang,
P.
,
Biyikli,
E.
,
Bai,
J.
,
Robbins,
J.
, and
To,
A.
, 2017, “
Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing: Theory and Experimental Validation,” Rapid Prototyping J.,
23(4), pp. 660–677.

Evans,
A. G.
,
Hutchinson,
J.
, and
Ashby,
M.
, 1998, “
Multifunctionality of Cellular Metal Systems,” Prog. Mater. Sci.,
43(3), pp. 171–221.

[CrossRef]
Zhao,
C.
, 2012, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells,” Int. J. Heat Mass Transfer,
55(13–14), pp. 3618–3632.

[CrossRef]
Ryan,
G.
,
Pandit,
A.
, and
Apatsidis,
D. P.
, 2006, “
Fabrication Methods of Porous Metals for Use in Orthopaedic Applications,” Biomaterials,
27(13), pp. 2651–2670.

[CrossRef] [PubMed]
Zhang,
P.
,
Toman,
J.
,
Yu,
Y.
,
Biyikli,
E.
,
Kirca,
M.
,
Chmielus,
M.
, and
To, A. C.
, 2015, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation,” ASME J. Manuf. Sci. Eng.,
137(2), p. 021004.

[CrossRef]
Huang,
X.
,
Zhou,
S.
,
Xie,
Y.
, and
Li,
Q.
, 2013, “
Topology Optimization of Microstructures of Cellular Materials and Composites for Macrostructures,” Comput. Mater. Sci.,
67, pp. 397–407.

[CrossRef]
Zhang,
J.
,
Wang,
Z.
, and
Zhao,
L.
, 2016, “
Dynamic Response of Functionally Graded Cellular Materials Based on the Voronoi Model,” Composites, Part B,
85, pp. 176–187.

[CrossRef]
Akbarzadeh,
A.
,
Fu,
J.
,
Chen,
Z.
, and
Qian,
L.
, 2014, “
Dynamic Eigenstrain Behavior of Magnetoelastic Functionally Graded Cellular Cylinders,” Compos. Struct.,
116, pp. 404–413.

[CrossRef]
Akbarzadeh,
A.
,
Fu,
J.
,
Liu,
L.
,
Chen,
Z.
, and
Pasini,
D.
, 2016, “
Electrically Conducting Sandwich Cylinder With a Planar Lattice Core Under Prescribed Eigenstrain and Magnetic Field,” Compos. Struct.,
153, pp. 632–644.

[CrossRef]
Wegst,
U. G.
,
Bai,
H.
,
Saiz,
E.
,
Tomsia,
A. P.
, and
Ritchie,
R. O.
, 2015, “
Bioinspired Structural Materials,” Nat. Mater.,
14(1), pp. 23–36.

[CrossRef] [PubMed]
Cheng,
L.
,
Zhang,
P.
,
Biyikli,
E.
,
Bai,
J.
,
Pilz,
S.
, and
To,
A. C.
, 2015, “
Integration of Topology Optimization With Efficient Design of Additive Manufactured Cellular Structures,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 10–12, pp. 1370–1377.

https://pdfs.semanticscholar.org/62dc/b8aea14d71d86cf578ae8e4c63b9281f70e9.pdf
Brackett,
D.
,
Ashcroft,
I.
, and
Hague,
R.
, 2011, “
Topology Optimization for Additive Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, pp. 348–362.

http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
Wang,
X.
,
Zhang,
P.
,
Ludwick,
S.
,
Belski,
E.
, and
To,
A. C.
, 2018, “
Natural Frequency Optimization of 3D Printed Variable-Density Honeycomb Structure Via a Homogenization-Based Approach,” Addit. Manuf.,
20(18), pp. 189–198.

Cheng,
L.
,
Liu,
J.
,
Liang,
X.
, and
To,
A. C.
, 2018, “
Coupling Lattice Structure Topology Optimization With Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design,” Comput. Methods Appl. Mech. Eng.,
332, pp. 408–439.

[CrossRef]
Cheng,
L.
,
Liu,
J.
, and
To,
A. C.
, 2018, “
Concurrent Lattice Infill With Feature Evolution Optimization for Additive Manufactured Heat Conduction Design,” Struct. Multidiscip. Optim., epub.

Bendsøe,
M. P.
, and
Kikuchi,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng.,
71(2), pp. 197–224.

[CrossRef]
Bendsøe,
M. P.
, and
Sigmund,
O.
, 1999, “
Material Interpolation Schemes in Topology Optimization,” Arch. Appl. Mech.,
69(9–10), pp. 635–654.

Bendsoe,
M. P.
, and
Sigmund,
O.
, 2013, Topology Optimization: Theory, Methods, and Applications,
Springer Science & Business Media, Boston, MA.

Xie,
Y. M.
, and
Steven,
G. P.
, 1993, “
A Simple Evolutionary Procedure for Structural Optimization,” Comput. Struct.,
49(5), pp. 885–896.

[CrossRef]
Xie,
Y. M.
, and
Steven,
G. P.
, 1997, “
Basic Evolutionary Structural Optimization,” Evolutionary Structural Optimization,
Springer, London, pp. 12–29.

[CrossRef]
Wang,
M. Y.
,
Wang,
X.
, and
Guo,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng.,
192(1–2), pp. 227–246.

[CrossRef]
Allaire,
G.
,
Jouve,
F.
, and
Toader,
A.-M.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys.,
194(1), pp. 363–393.

[CrossRef]
Liu,
J.
,
Ma,
Y.
,
Fu,
J.
, and
Duke,
K.
, 2015, “
A Novel CACD/CAD/CAE Integrated Design Framework for Fiber-Reinforced Plastic Parts,” Adv. Eng. Software,
87, pp. 13–29.

[CrossRef]
Liu,
J.
,
Cheng,
L.
, and
To,
A. C.
, 2017, “
Arbitrary Void Feature Control in Level Set Topology Optimization,” Comput. Methods Appl. Mech. Eng.,
324, pp. 595–618.

[CrossRef]
Li,
Q.
,
Steven,
G. P.
,
Querin,
O. M.
, and
Xie,
Y.
, 1999, “
Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization,” Int. J. Heat Mass Transfer,
42(17), pp. 3361–3371.

[CrossRef]
Yaji,
K.
,
Yamada,
T.
,
Kubo,
S.
,
Izui,
K.
, and
Nishiwaki,
S.
, 2015, “
A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions,” Int. J. Heat Mass Transfer,
81, pp. 878–888.

[CrossRef]
Borrvall,
T.
, and
Petersson,
J.
, 2003, “
Topology Optimization of Fluids in Stokes Flow,” Int. J. Numer. Methods Fluids,
41(1), pp. 77–107.

[CrossRef]
Qian,
X.
, and
Dede,
E. M.
, 2016, “
Topology Optimization of a Coupled Thermal-Fluid System Under a Tangential Thermal Gradient Constraint,” Struct. Multidiscip. Optim.,
54(3), pp. 531–551.

[CrossRef]
Sigmund,
O.
, and
Torquato,
S.
, 1997, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method,” Proc. SPIE,
3040, pp. 52–60.

Christiansen,
R. E.
, and
Sigmund,
O.
, 2016, “
Designing Meta Material Slabs Exhibiting Negative Refraction Using Topology Optimization,” Struct. Multidiscip. Optim.,
54(3), pp. 469–482.

[CrossRef]
Díaaz,
A. R.
, and
Kikuchi,
N.
, 1992, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method,” Int. J. Numer. Methods Eng.,
35(7), pp. 1487–1502.

[CrossRef]
Ma,
Z.-D.
,
Kikuchi,
N.
, and
Cheng,
H.-C.
, 1995, “
Topological Design for Vibrating Structures,” Comput. Methods Appl. Mech. Eng.,
121(1–4), pp. 259–280.

[CrossRef]
Ma,
Z.-D.
,
Cheng,
H.-C.
, and
Kikuchi,
N.
, 1994, “
Structural Design for Obtaining Desired Eigenfrequencies by Using the Topology and Shape Optimization Method,” Comput. Syst. Eng.,
5(1), pp. 77–89.

[CrossRef]
Pedersen,
N. L.
, 2000, “
Maximization of Eigenvalues Using Topology Optimization,” Struct. Multidiscip. Optim.,
20(1), pp. 2–11.

[CrossRef]
Du,
J.
, and
Olhoff,
N.
, 2010, “
Topological Design of Vibrating Structures With Respect to Optimum Sound Pressure Characteristics in a Surrounding Acoustic Medium,” Struct. Multidiscip. Optim.,
42(1), pp. 43–54.

[CrossRef]
Du,
J.
, and
Olhoff,
N.
, 2007, “
Topological Design of Freely Vibrating Continuum Structures for Maximum Values of Simple and Multiple Eigenfrequencies and Frequency Gaps,” Struct. Multidiscip. Optim.,
34(2), pp. 91–110.

[CrossRef]
Niu,
B.
,
Yan,
J.
, and
Cheng,
G.
, 2009, “
Optimum Structure With Homogeneous Optimum Cellular Material for Maximum Fundamental Frequency,” Struct. Multidiscip. Optim.,
39(2), pp. 115–132.

[CrossRef]
Huang,
X.
,
Zuo,
Z.
, and
Xie,
Y.
, 2010, “
Evolutionary Topological Optimization of Vibrating Continuum Structures for Natural Frequencies,” Comput. Struct.,
88(5–6), pp. 357–364.

[CrossRef]
Zuo,
Z. H.
,
Huang,
X.
,
Rong,
J. H.
, and
Xie,
Y. M.
, 2013, “
Multi-Scale Design of Composite Materials and Structures for Maximum Natural Frequencies,” Mater. Des.,
51, pp. 1023–1034.

[CrossRef]
Xia,
Q.
,
Shi,
T.
, and
Wang,
M. Y.
, 2011, “
A Level Set Based Shape and Topology Optimization Method for Maximizing the Simple or Repeated First Eigenvalue of Structure Vibration,” Struct. Multidiscip. Optim.,
43(4), pp. 473–485.

[CrossRef]
Gaynor,
A. T.
, and
Guest,
J. K.
, 2016, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design,” Struct. Multidiscip. Optim.,
54(5), pp. 1157–1172.

[CrossRef]
Wu,
J.
,
Wang,
C. C.
,
Zhang,
X.
, and
Westermann,
R.
, 2016, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing,” Comput.-Aided Des.,
80, pp. 32–42.

[CrossRef]
Qian,
X.
, 2017, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach,” Int. J. Numer. Methods Eng.,
111(3), pp. 247–272.

Bensoussan,
A.
,
Lions,
J. L.
, and
Papanicolaou,
G. C.
, 1979, “
Boundary Layers and Homogenization of Transport Processes,” Publ. Res. Inst. Math. Sci.,
15(1), pp. 53–157.

[CrossRef]
Bensoussan,
A.
,
Lions,
J.-L.
, and
Papanicolaou,
G.
, 2011, Asymptotic Analysis for Periodic Structures, Vol.
374,
American Mathematical Society, Providence, RI.

Willis,
J. R.
, 1981, “
Variational and Related Methods for the Overall Properties of Composites,” Adv. Appl. Mech.,
21, pp. 1–78.

[CrossRef]
Bakhvalov,
N. S.
, and
Panasenko,
G.
, 2012, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, Vol.
36,
Springer Science & Business Media, Berlin.

Arabnejad,
S.
, and
Pasini,
D.
, 2013, “
Mechanical Properties of Lattice Materials Via Asymptotic Homogenization and Comparison With Alternative Homogenization Methods,” Int. J. Mech. Sci.,
77, pp. 249–262.

[CrossRef]
Hollister,
S. J.
, and
Kikuchi,
N.
, 1992, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites,” Comput. Mech.,
10(2), pp. 73–95.

[CrossRef]
Andreassen,
E.
, and
Andreasen,
C. S.
, 2014, “
How to Determine Composite Material Properties Using Numerical Homogenization,” Comput. Mater. Sci.,
83, pp. 488–495.

[CrossRef]
Cheng,
G.-D.
,
Cai,
Y.-W.
, and
Xu,
L.
, 2013, “
Novel Implementation of Homogenization Method to Predict Effective Properties of Periodic Materials,” Acta Mech. Sin.,
29(4), pp. 550–556.

[CrossRef]
Wang,
Y.
,
Xu,
H.
, and
Pasini,
D.
, 2017, “
Multiscale Isogeometric Topology Optimization for Lattice Materials,” Comput. Methods Appl. Mech. Eng.,
316, pp. 568–585.

Terada,
K.
,
Hori,
M.
,
Kyoya,
T.
, and
Kikuchi,
N.
, 2000, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approaches,” Int. J. Solids Struct.,
37(16), pp. 2285–2311.

[CrossRef]
Zhang,
W.
, and
Sun,
S.
, 2006, “
Scale‐Related Topology Optimization of Cellular Materials and Structures,” Int. J. Numer. Methods Eng.,
68(9), pp. 993–1011.

[CrossRef]
Tantikom,
K.
,
Aizawa,
T.
, and
Mukai,
T.
, 2005, “
Symmetric and Asymmetric Deformation Transition in the Regularly Cell-Structured Materials—Part I: Experimental Study,” Int. J. Solids Struct.,
42(8), pp. 2199–2210.

[CrossRef]
Shu,
L.
,
Wang,
M. Y.
,
Fang,
Z.
,
Ma,
Z.
, and
Wei,
P.
, 2011, “
Level Set Based Structural Topology Optimization for Minimizing Frequency Response,” J. Sound Vib.,
330(24), pp. 5820–5834.

[CrossRef]
Kim,
N. H.
,
Dong,
J.
,
Choi,
K. K.
,
Vlahopoulos,
N.
,
Ma,
Z.-D.
,
Castanier,
M.
, and
Pierre, C.
, 2003, “
Design Sensitivity Analysis for Sequential Structural–Acoustic Problems,” J. Sound Vib.,
263(3), pp. 569–591.

[CrossRef]
Tcherniak,
D.
, 2002, “
Topology Optimization of Resonating Structures Using SIMP Method,” Int. J. Numer. Methods Eng.,
54(11), pp. 1605–1622.

[CrossRef]
Sigmund,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization*,” J. Struct. Mech.,
25(4), pp. 493–524.

Svanberg,
K.
, and
Svärd,
H.
, 2013, “
Density Filters for Topology Optimization Based on the Pythagorean Means,” Struct. Multidiscip. Optim.,
48(5), pp. 859–875.

[CrossRef]
Svanberg, K.
, 2002, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations,” SIAM J. Optim.,
12(2), pp. 555–573.

Svanberg,
K.
, 1987, “
The Method of Moving a Asymptotes—A New Method for Structural Optimization,” Int. J. Numer. Methods Eng.,
24(2), pp. 359–373.

Olhoff,
N.
,
Lund,
E.
, and
Seyranian,
A.
, 1994, “
Sensitivity Analysis and Optimization of Multiple Eigenvalues in Structural Design Problems,” AIAA Paper No. AIAA-94-4319-CP.