Research Papers

Modeling of Solid-State Hot Press Bonding and Its Application to the Fabrication of Titanium Alloy Joints

[+] Author and Article Information
C. Zhang

State Key Laboratory of
Solidification Processing,
Northwestern Polytechnical University,
Xi'an 710072, China;
Department of Mechanical Engineering,
Lyon University/INSA-Lyon/CNRS,
Villeurbanne Cedex F-69621, France
e-mail: zc9997242256@126.com

H. Li

State Key Laboratory of
Solidification Processing,
Northwestern Polytechnical University,
Xi'an 710072, China
e-mail: lihong86@nwpu.edu.cn

M. Q. Li

State Key Laboratory of
Solidification Processing,
Northwestern Polytechnical University,
Xi'an 710072, China
e-mail: honeymli@nwpu.edu.cn

1Corresponding authors.

Manuscript received July 3, 2017; final manuscript received May 9, 2018; published online June 1, 2018. Assoc. Editor: Wayne Cai.

J. Manuf. Sci. Eng 140(8), 081007 (Jun 01, 2018) (12 pages) Paper No: MANU-17-1405; doi: 10.1115/1.4040262 History: Received July 03, 2017; Revised May 09, 2018

Solid-state hot press bonding is an advanced joining process wherein two specimens can be joined under high pressure for a period of time at an elevated temperature. The main step in hot press bonding is the void closure process. In the present study, a three-dimensional theoretical model for describing the void closure process is developed. In the model, the void closure process is divided into two stages: in the first stage, surface asperities are flattened by the time-independent local plastic flow mechanism, and isolated voids form at the bonding interface; in the second stage, the void closure is accomplished by three time-dependent mechanisms, namely, the viscoplastic flow mechanism, surface source diffusion mechanism, and interface source diffusion mechanism. The initial and ending conditions of these mechanisms are proposed. The model also includes an analysis of the effect of macroscopic deformation on void closure. Hot press bonding experiments of Ti–6Al–4V alloy are conducted to validate the model. The modeling predictions show good agreement with the experimental results.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Liu, X. , Chen, G. , Ni, J. , and Feng, Z. , 2016, “ Computational Fluid Dynamics Modeling on Steady-State Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel,” ASME J. Manuf. Sci. Eng., 139(5), p. 051004. [CrossRef]
Yue, Y. , Li, Z. , Ji, S. , Huang, Y. , and Zhou, Z. , 2016, “ Effect of Reverse-Threaded Pin on Mechanical Properties of Friction Stir Lap Welded Alclad 2024 Aluminum Alloy,” J. Mater. Sci. Technol., 32(7), pp. 671–675. [CrossRef]
Ajri, A. , and Shin, Y. C. , 2017, “ Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples Via Predictive Numerical Modeling and Experiments,” ASME J. Manuf. Sci. Eng., 139(11), p. 111009. [CrossRef]
Franke, D. J. , Morrow, J. D. , Zinn, M. R. , and Pfefferkorn, F. E. , 2017, “ Solid-State Infiltration of 6061-T6 Aluminum Alloy Into Carbon Fibers Via Friction Stir Welding,” ASME J. Manuf. Sci. Eng., 139(11), p. 111014. [CrossRef]
Hou, Z. , Sheikh-Ahmad, J. , Jarrar, F. , and Ozturk, F. , 2018, “ Residual Stresses in Dissimilar Friction Stir Welding of AA2024 and AZ31: Experimental and Numerical Study,” ASME J. Manuf. Sci. Eng., 140(5), p. 051015.
Cuellar, K. J. Q. , and Silveira, J. L. L. , 2017, “ Analysis of Torque in Friction Stir Welding of Aluminum Alloy 5052 by Inverse Problem Method,” ASME J. Manuf. Sci. Eng., 139(4), p. 041017. [CrossRef]
Zhu, X. B. , Li, Y. B. , Chen, G. L. , and Wang, P. C. , 2013, “ Curing-Induced Distortion Mechanism in Adhesive Bonding of Aluminum AA6061-T6 and Steels,” ASME J. Manuf. Sci. Eng., 135(5), p. 051007. [CrossRef]
Zhao, H. , Duan, X. , Ma, M. , Lu, L. , Cai, Z. , Wang, P. C. , and Fickes, J. D. , 2010, “ Dynamic Characteristics of Adhere Bonded High Strength Steel Joints,” Sci. Technol. Weld. Joining, 15(6), pp. 486–490. [CrossRef]
Mazhari, E. , and Nassar, S. A. , 2017, “ A Coupled Peel and Shear Stress-Diffusion Model for Adhesively Bonded Single Lap Joints,” ASME J. Manuf. Sci. Eng., 139(9), p. 091007. [CrossRef]
Zhang, C. Q. , Robson, J. D. , Ciuca, O. , and Prangnell, P. B. , 2014, “ Microstructural Characterization and Mechanical Properties of High Power Ultrasonic Spot Welded Aluminum Alloy AA6111-TiAl6V4 Dissinliar Joints,” Mater. Charact., 97, pp. 83–91. [CrossRef]
Zhang, C. Q. , Robson, J. D. , and Prangnell, P. B. , 2016, “ Dissimilar Ultrasonic Spot Welding of Aerospace Aluminium Alloy AA2139 to Titanium Alloy TiAl6V4,” J. Mater. Process. Technol., 231, pp. 382–388. [CrossRef]
Chen, K. , Liu, X. , and Ni, J. , 2017, “ Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel,” ASME J. Manuf. Sci. Eng., 139(8), p. 081016. [CrossRef]
Lei, H. Y. , Li, Y. B. , Carlson, B. E. , and Lin, Z. Q. , 2016, “ Microstructure and Mechanical Performance of Cold Metal Transfer Spot Joints of AA6061-T6 to Galvanized DP590 Using Edge Plug Welding Mode,” ASME J. Manuf. Sci. Eng., 138(7), p. 071009. [CrossRef]
Mazar Atabaki, M. , and Idris, J. , 2012, “ Partial Transient Liquid Phase Diffusion Bonding of Zircaloy-4 to Stabilized Austenitic Stainless Steel 321 Using Titanium Interlayer,” ASME J. Manuf. Sci. Eng., 134(1), p. 015001. [CrossRef]
Binesh, B. , and Jazayeri Gharehbagh, A. , 2016, “ Transient Liquid Phase Bonding of IN738 LC/MBF-15/IN738 LC: Solidification Behavior and Mechanical Properties,” J. Mater. Sci. Technol., 32(11), pp. 1137–1151. [CrossRef]
Xi, L. , Banu, M. , Hu, J. S. , Cai, W. , and Abell, J. , 2016, “ Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints,” ASME J. Manuf. Sci. Eng., 139(1), p. 011008. [CrossRef]
Zhao, D. , Zhao, K. , Ren, D. , and Guo, X. , 2017, “ Ultrasonic Welding of Magnesium-Titanium Dissimilar Metals: A Study on Influences of Welding Parameters on Mechanical Property by Experimentation and Artificial Neural Network,” ASME J. Manuf. Sci. Eng., 139(3), p. 031019. [CrossRef]
Zhang, C. , Li, H. , and Li, M. Q. , 2015, “ Formation Mechanisms of High Quality Diffusion Bonded Martensitic Stainless Steel Joints,” Sci. Technol. Weld. Joining, 20(2), pp. 115–122. [CrossRef]
Zhang, C. , Li, M. Q. , and Li, H. , 2017, “ On the Shear Strength of Similar Diffusion Bonded 1Cr11Ni2W2MoV Stainless Steel Hollow Structural Components: Effect of Void Morphology,” J. Manuf. Process, 29, pp. 10–17. [CrossRef]
Chen, S. D. , Ke, F. J. , Zhou, M. , and Bai, Y. L. , 2007, “ Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al,” Acta Mater, 55(9), pp. 3169–3175. [CrossRef]
He, G. , Liu, H. H. , Tan, Q. B. , and Ni, J. H. , 2011, “ Diffusion Bonding of Ti-2.5Al-2.5Mo-2.5Zr and Co-Cr-Mo Alloys,” J. Alloys Compd., 509(27), pp. 7324–7329. [CrossRef]
Xun, Y. W. , and Tan, M. J. , 2000, “ Applications of Superplastic Forming and Diffusion Bonding to Hollow Engine Blades,” J. Mater. Process. Technol., 99(1–3), pp. 80–85.
Paul, B. K. , Kwon, P. , and Subramanian, R. , 2006, “ Understanding Limits on Fin Aspect Ratios in Counterflow Microchannel Arrays Produced by Diffusion Bonding,” ASME J. Manuf. Sci. Eng., 128(4), pp. 977–983. [CrossRef]
Zhang, C. , Li, H. , and Li, M. Q. , 2015, “ Detailed Evolution Mechanism of Interfacial Void Morphology in Diffusion Bonding,” J. Mater. Sci. Technol., 32(3), pp. 259–264. http://www.jmst.org/CN/10.1016/j.jmst.2015.12.002
Hill, A. , and Wallach, E. R. , 1989, “ Modelling Solid-State Diffusion Bonding,” Acta Metall., 37(9), pp. 2425–2437. [CrossRef]
Pilling, J. , Livesey, D. W. , Hawkyard, J. B. , and Ridley, N. , 1984, “ Solid-State Bonding in Superplastic Ti-6Al-4V,” Met. Sci., 18(3), pp. 117–122. [CrossRef]
Orhan, N. , Aksoy, M. , and Eroglu, M. , 1999, “ A New Model for Diffusion Bonding and Its Application to Duplex Alloys,” Mater. Sci. Eng. A, 271(1–2), pp. 458–468. [CrossRef]
Li, H. , Liu, H. B. , Yu, W. X. , and Li, M. Q. , 2013, “ Fabrication of High Strength Bond of Ti-17 Alloy Using Press Bonding Under a High Bonding Pressure,” Mater. Lett., 108, pp. 212–214. [CrossRef]
Wu, H. , 1999, “ Influence of Process Variables on Press Bonding of Superplastic 8090 Al-Li Alloy,” Mater. Sci. Eng. A, 264(1–2), pp. 194–200. [CrossRef]
Hill, R. , 1965, “ A Self-Consistent Mechanics of Composite Materials,” J. Mech. Phys. Solids, 13(4), pp. 213–222. [CrossRef]
Eshelby, J. D. , 1957, “ The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. A, 241(1226), pp. 376–396. [CrossRef]
Eshelby, J. D. , 1959, “ The Elastic Field Outside an Ellipsoidal Inclusion,” Proc. R. Soc. A, 252(1271), pp. 561–569.
Garmong, G. , Paton, N. E. , and Argon, A. S. , 1975, “ Attainment of Full Interfacial Contact During Diffusion Bonding,” Metall. Trans. A, 6(6), pp. 1269–1279.
Kuczynski, G. C. , 1949, “ Self-Diffusion in Sintering of Metallic Particles,” Trans. Am. I. Min. Met. Eng., 185(2), pp. 169–178. http://www.onemine.org/document/abstract.cfm?docid=20478&title=Institute-of-Metals-Division--Selfdiffusion-in-Sintering-of-Metallic-Particles
Derby, B. , and Wallach, E. R. , 1982, “ Theoretical Model for Diffusion Bonding,” Met. Sci., 16(1), pp. 49–56. [CrossRef]
Hull, D. , and Rimmer, D. E. , 1959, “ The Growth of Grain-Boundary Voids Under Stress,” Philos. Mag., 4(42), pp. 673–687. [CrossRef]
Chen, I. W. , and Argon, A. S. , 1981, “ Diffusive Growth of Grain-Boundary Cavities,” Acta Mater., 29(10), pp. 1759–1768. [CrossRef]
Jonson, D. L. , 1969, “ New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients From Sintering Data,” J. Appl. Phys, 40(1), pp. 192–200. [CrossRef]
Sargent, P. M. , and Ashby, M. F. , 1982, “ Deformation Maps for Titanium and Zirconium,” Scr. Mater., 16(12), pp. 1415–1422.
Ma, R. F. , Li, M. Q. , Li, H. , and Yu, W. X. , 2012, “ Modeling of Void Closure in Diffusion Bonding Process Based on Dynamic Conditions,” Sci. China Technol. Sci., 55(9), pp. 2420–2431. [CrossRef]
Beer, F. R. , and Johnson, E. R. , 1981, Mechanics of Materials, McGraw-Hill, New York.
Luo, J. , Li, M. Q. , Li, X. L. , and Shi, Y. P. , 2010, “ Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables,” Mech. Mater., 42(2), pp. 157–165. [CrossRef]
Arieli, A. , and Rosen, A. , 1977, “ Superplastic Deformation of Ti-6Al-4V Alloy,” Metall. Trans. A, 8(10), pp. 1591–1595. [CrossRef]


Grahic Jump Location
Fig. 1

Geometric assumption of a void in (a) a two-dimensional model; (b) a three-dimensional model

Grahic Jump Location
Fig. 2

Schematic diagrams of the void closure process

Grahic Jump Location
Fig. 3

Oblate spheroidal void in a unit cell

Grahic Jump Location
Fig. 4

Void and contact areas within the cell unit at the bonding interface (XOY plane)

Grahic Jump Location
Fig. 5

Volume of materials around the void before (a) and after (b) local plastic flow

Grahic Jump Location
Fig. 6

Remote stresses acting on a void in the unit cell

Grahic Jump Location
Fig. 7

Joined specimen (a) and bonding interface area (b) before macroscopic deformation; joined specimen (c) and bonding interface area (d) after macroscopic deformation

Grahic Jump Location
Fig. 8

Radius of curvature at point A and B in the XOZ plane

Grahic Jump Location
Fig. 9

Material redistribution by the surface source diffusion mechanism: (a) actual change in void shape due to redistribution and (b) volume of matter transfer due to the simplification

Grahic Jump Location
Fig. 10

Stress distribution around void at bonding interface

Grahic Jump Location
Fig. 11

Flowchart of the model calculations

Grahic Jump Location
Fig. 12

Optical micrograph of Ti–6Al–4V alloy before bonding

Grahic Jump Location
Fig. 13

Schematic of the hot press bonding process

Grahic Jump Location
Fig. 14

Experimental results of the bonding interface morphologies under different parameters: (a) 1123 K, 25 MPa, 180 s; (b) 1123 K, 25 MPa, 300 s; (c) 1123 K, 25 MPa, 600 s; (d) 1123 K, 30 MPa, 180 s; (e) 1123 K, 30 MPa, 600 s; (f) 1123 K, 30 MPa, 900 s; (g) 1173 K, 30 MPa, 180 s; and (h) 1173 K, 30 MPa, 600 s

Grahic Jump Location
Fig. 15

Comparisons between model predictions and experimental results of area fraction bonded: (a) temperature and (b) pressure



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In