Technical Brief

Fabrication of Zinc–Tungsten Carbide Nanocomposite Using Cold Compaction Followed by Melting

[+] Author and Article Information
Injoo Hwang

Department of Mechanical and Aerospace Engineering,
University of California, Los Angeles,
Los Angeles, CA 90095
e-mail: injoo2012@ucla.edu

Zeyi Guan

Department of Mechanical and Aerospace Engineering,
University of California, Los Angeles,
Los Angeles, CA 90095
e-mail: guanzeyi@g.ucla.edu

Xiaochun Li

Fellow ASME
Department of Mechanical and Aerospace Engineering,
University of California, Los Angeles,
Los Angeles, CA 90095
e-mail: xcli@seas.ucal.edu

1Corresponding author.

Manuscript received January 4, 2018; final manuscript received April 13, 2018; published online May 21, 2018. Assoc. Editor: Donggang Yao.

J. Manuf. Sci. Eng 140(8), 084503 (May 21, 2018) (6 pages) Paper No: MANU-18-1013; doi: 10.1115/1.4040026 History: Received January 04, 2018; Revised April 13, 2018

Zinc (Zn) is an important material for numerous applications since it has pre-eminent ductility and high ultimate tensile strain, as well high corrosion resistivity and good biocompatibility. However, since Zn suffers from low mechanical strengths, most of the applications would use Zn as a coating or alloying element. In this study, a new class of Zn-based material with a significantly enhanced mechanical property is developed. The zinc-10 vol % tungsten carbide (Zn-10WC) nanocomposite was fabricated by cold compaction followed by a melting process. The Zn-10WC nanocomposites offer a uniform nanoparticle dispersion with little agglomeration, exhibiting significantly enhanced mechanical properties by micropillar compression tests and microwire tensile testing. The nanocomposites offer an over 200% and 180% increase in yield strength and ultimate tensile strength (UTS), respectively. The strengthening effect could be attributed to Orowan strengthening and grain refinement induced by nanoparticles.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Short, N. , and Dennis, J. , 1997, “Corrosion Resistance of Zinc-Alloy Coated Steel in Construction Industry Environments,” Trans. IMF, 75(2), pp. 47–52. [CrossRef]
Wilcox, G. , and Gabe, D. , 1993, “Electrodeposited Zinc Alloy Coatings,” Corros. Sci., 35(5–8), pp. 1251–1258. [CrossRef]
Jun, B. , Yun, Z. , Liu, X.-H. , and Wang, G.-D. , 2006, “Development of Hot Dip Galvanized Steel Strip and Its Application in Automobile Industry,” J. Iron Steel Res., Int., 13(3), pp. 47–50. [CrossRef]
Bowen, P. K. , Drelich, J. , and Goldman, J. , 2013, “Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents,” Adv. Mater., 25(18), pp. 2577–2582. [CrossRef] [PubMed]
Short, N. R. , and Dennis, J. K. , 2017, “Corrosion Resistance of Zinc-Alloy Coated Steel in Construction Industry Environments,” Trans. IMF, 75(2), pp. 47–52. [CrossRef]
Elvins, J. , Spittle, J. A. , Sullivan, J. H. , and Worsley, D. A. , 2008, “The Effect of Magnesium Additions on the Microstructure and Cut Edge Corrosion Resistance of Zinc Aluminium Alloy Galvanised Steel,” Corros. Sci., 50(6), pp. 1650–1658. [CrossRef]
Elvins, J. , Spittle, J. A. , and Worsley, D. A. , 2005, “Microstructural Changes in Zinc Aluminium Alloy Galvanising as a Function of Processing Parameters and Their Influence on Corrosion,” Corros. Sci., 47(11), pp. 2740–2759. [CrossRef]
Staiger, M. P. , Pietak, A. M. , Huadmai, J. , and Dias, G. , 2006, “Magnesium and Its Alloys as Orthopedic Biomaterials: A Review,” Biomaterials, 27(9), pp. 1728–1734. [CrossRef] [PubMed]
Ma, J. , Zhao, N. , and Zhu, D. , 2016, “Bioabsorbable Zinc Ion Induced Biphasic Cellular Responses in Vascular Smooth Muscle Cells,” Sci. Rep., 6(1), p. 26661. [CrossRef] [PubMed]
Bowen, P. K. , Shearier, E. R. , Zhao, S. , Guillory, R. J. , Zhao, F. , Goldman, J. , and Drelich, J. W. , 2016, “Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn‐Alloys,” Adv. Healthcare Mater., 5(10), pp. 1121–1140. [CrossRef]
Chen, D. , He, Y. , Tao, H. , Zhang, Y. , Jiang, Y. , Zhang, X. , and Zhang, S. , 2011, “Biocompatibility of Magnesium-Zinc Alloy in Biodegradable Orthopedic Implants,” Int. J. Mol. Med., 28(3), pp. 343–348. [PubMed]
Meyers, M. A. , Mishra, A. , and Benson, D. J. , 2006, “Mechanical Properties of Nanocrystalline Materials,” Prog. Mater. Sci., 51(4), pp. 427–556. [CrossRef]
Economides, N. , Kotsaki-Kovatsi, V.-P. , Poulopoulos, A. , Kolokuris, I. , Rozos, G. , and Shore, R. , 1995, “Experimental Study of the Biocompatibility of Four Root Canal Sealers and Their Influence on the Zinc and Calcium Content of Several Tissues,” J. Endod., 21(3), pp. 122–127. [CrossRef] [PubMed]
Yang, H. , Wang, C. , Liu, C. , Chen, H. , Wu, Y. , Han, J. , Jia, Z. , Lin, W. , Zhang, D. , and Li, W. , 2017, “Evolution of the Degradation Mechanism of Pure Zinc Stent in the One-Year Study of Rabbit Abdominal Aorta Model,” Biomaterials, 145, pp. 92–105. [CrossRef] [PubMed]
Mortensen, A. , and Llorca, J. , 2010, “Metal Matrix Composites,” Annu. Rev. Mater. Res., 40(1), pp. 243–270. [CrossRef]
Javadi, A. , Cao, C. , and Li, X. , 2017, “Manufacturing of Al-TiB2 Nanocomposites by Flux-Assisted Liquid State Processing,” Procedia Manuf., 10, pp. 531–535. [CrossRef]
Liu, W. , Cao, C. , Xu, J. , Wang, X. , and Li, X. , 2016, “Molten Salt Assisted Solidification Nanoprocessing of Al-TiC Nanocomposites,” Mater. Lett., 185, pp. 392–395. [CrossRef]
Xu, J. , Chen, L. , Choi, H. , Konish, H. , and Li, X. , 2013, “Assembly of Metals and Nanoparticles Into Novel Nanocomposite Superstructures,” Sci. Rep., 3(1), p. 1730. [CrossRef]
Xu, J. , Chen, L. , Choi, H. , and Li, X. , 2012, “Theoretical Study and Pathways for Nanoparticle Capture During Solidification of Metal Melt,” J. Phys.: Condens. Matter, 24(25), p. 255304. [CrossRef] [PubMed]
Chen, L.-Y. , Xu, J.-Q. , Choi, H. , Pozuelo, M. , Ma, X. , Bhowmick, S. , Yang, J.-M. , Mathaudhu, S. , and Li, X.-C. , 2015, “Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles,” Nature, 528(7583), pp. 539–543. [CrossRef] [PubMed]
Stefanescu, D. , Dhindaw, B. , Kacar, S. , and Moitra, A. , 1988, “Behavior of Ceramic Particles at the Solid-Liquid Metal Interface in Metal Matrix Composites,” Metall. Trans. A, 19(11), pp. 2847–2855. [CrossRef]
Bolton, J. , and Gant, A. , 1993, “Phase Reactions and Chemical Stability of Ceramic Carbide and Solid Lubricant Particulate Additions Within Sintered High Speed Steel Matrix,” Powder Metall., 36(4), pp. 267–274. [CrossRef]
Hashim, J. , Looney, L. , and Hashmi, M. , 1999, “Metal Matrix Composites: Production by the Stir Casting Method,” J. Mater. Process. Technol., 92–93, pp. 1–7. [CrossRef]
Hashim, J. , Looney, L. , and Hashmi, M. , 2002, “Particle Distribution in Cast Metal Matrix Composites—Part I,” J. Mater. Process. Technol., 123(2), pp. 251–257. [CrossRef]
Hashim, J. , Looney, L. , and Hashmi, M. , 2002, “Particle Distribution in Cast Metal Matrix Composites—Part II,” J. Mater. Process. Technol., 123(2), pp. 258–263. [CrossRef]
Pagounis, E. , and Lindroos, V. , 1998, “Processing and Properties of Particulate Reinforced Steel Matrix Composites,” Mater. Sci. Eng.: A, 246(1–2), pp. 221–234. [CrossRef]
Tjong, S. C. , 2007, “Novel Nanoparticle‐Reinforced Metal Matrix Composites With Enhanced Mechanical Properties,” Adv. Eng. Mater., 9(8), pp. 639–652. [CrossRef]
Li, X. , Yang, Y. , and Cheng, X. , 2004, “Ultrasonic-Assisted Fabrication of Metal Matrix Nanocomposites,” J. Mater. Sci., 39(9), pp. 3211–3212. [CrossRef]
Lan, J. , Yang, Y. , and Li, X. , 2004, “Microstructure and Microhardness of SiC Nanoparticles Reinforced Magnesium Composites Fabricated by Ultrasonic Method,” Mater. Sci. Eng.: A, 386(1–2), pp. 284–290. [CrossRef]
Bastian, S. , Busch, W. , Kühnel, D. , Springer, A. , Meißner, T. , Holke, R. , Scholz, S. , Iwe, M. , Pompe, W. , and Gelinsky, M. , 2009, “Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells In Vitro,” Environ. Health Perspect., 117(4), pp. 530–536. [CrossRef] [PubMed]
Zhao, J. , Javadi, A. , Lin, T.-C. , Hwang, I. , Yang, Y. , Guan, Z. , and Li, X. , 2016, “Scalable Manufacturing of Metal Nanoparticles by Thermal Fiber Drawing,” ASME J. Micro- Nano-Manuf., 4(4), p. 041002. [CrossRef]
Kurlov, A. S. , and Gusev, A. I. , 2013, “Nanocrystalline Tungsten Carbide,” Tungsten Carbides, Springer, Cham, Switzerland, pp. 109–189. [CrossRef]
Liu, G. , Zhang, G. , Jiang, F. , Ding, X. , Sun, Y. , Sun, J. , and Ma, E. , 2013, “Nanostructured High-Strength Molybdenum Alloys With Unprecedented Tensile Ductility,” Nat. Mater., 12(4), pp. 344–350. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Schematic of experimental method

Grahic Jump Location
Fig. 2

(a)–(c) Microstructure of Zn-10WC nanocomposite by SEM with different magnification. (d)–(g) EDS detection of elements Zn, W, and O, indication Zn matrix, WC nanoparticles, and oxidations. (h) and (i) Grain size of Zn and Zn-10 vol % WC microstructure by SEM.

Grahic Jump Location
Fig. 3

Zn and Zn-10WC micropillars and their corresponding micropillar compression test results

Grahic Jump Location
Fig. 4

(a) Zn-10WC microwire tensile testing setup, (b) tensile testing result of stress–strain curve for Zn-10WC and pure Zn. (c)–(e) SEM images of microwire samples, with nanoparticles on the surface. (f) Longitudinal cross section image of Zn-10WC microwire with well-distributed WC nanoparticles.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In