An Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance

[+] Author and Article Information
Xiaoran Li

Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Dr. Roland K. Chen

School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164, USA

Wei Li

Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

1Corresponding author.

ASME doi:10.1115/1.4039493 History: Received October 27, 2017; Revised February 25, 2018


Bipolar tissue hemostasis is a medical procedure where high frequency alternating current is applied to biological tissue for wound closing and blood vessel sealing through heating. The process is often performed with a set of laparoscopic forceps in a minimal invasive surgery to achieve less bleeding and shorter recovery time. However, problems such as tissue sticking, thermal damage, and seal failure often occur and need to be solved before the process can be reliably used in more surgical procedures. In this study, experiments were conducted to examine process parameters and the dynamic behavior of bipolar heating process through electrical impedance measurements. The effects of electrode compression level, heating power, and time are analyzed. Heating energy and bio-impedance are evaluated for quality prediction. Tissue sticking levels were correlated to the size of denatured tissue zone. It is found that tissue denaturation starts from the center of the heated region. Dynamic impedance reveals the stages of tissue hemostasis process. However, it is strongly affected by the compression level and heating power. Existing criteria for quality prediction and control using the heating energy and minimal impedance are not reliable. The size of denatured tissue zone can be predicted with the heating energy; however, the prediction is strongly dependent on the compression level. To avoid sticking, a low power and low compression level should be used for the same denatured tissue zone size.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In