0
Review Article

Hybrid Processes in Additive Manufacturing

[+] Author and Article Information
Michael P. Sealy

Department of Mechanical and
Materials Engineering,
University of Nebraska-Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588-0526
e-mail: sealy@unl.edu

Gurucharan Madireddy

Department of Mechanical and
Materials Engineering,
University of Nebraska-Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588-0526
e-mail: gmadireddy2@huskers.unl.edu

Robert E. Williams

Department of Mechanical and
Materials Engineering,
University of Nebraska-Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588-0526
e-mail: rwilliams2@unl.edu

Prahalada Rao

Department of Mechanical and
Materials Engineering,
University of Nebraska-Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588-0526
e-mail: rao@unl.edu

Maziar Toursangsaraki

School of Mechanical Engineering,
Iran University of Science and Technology,
Narmak,
Tehran 16846-13114, Iran
e-mail: maziar.tour@gmail.com

1Corresponding author.

Manuscript received July 12, 2017; final manuscript received November 26, 2017; published online March 23, 2018. Assoc. Editor: Zhijian J. Pei.

J. Manuf. Sci. Eng 140(6), 060801 (Mar 23, 2018) (13 pages) Paper No: MANU-17-1429; doi: 10.1115/1.4038644 History: Received July 12, 2017; Revised November 26, 2017

Hybrid additive manufacturing (hybrid-AM) has described hybrid processes and machines as well as multimaterial, multistructural, and multifunctional printing. The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing (AM) paradigm. This work primarily focuses on defining hybrid-AM in relation to hybrid manufacturing (HM) and classifying hybrid-AM processes. Hybrid-AM machines, materials, structures, and function are also discussed. Hybrid-AM processes are defined as the use of AM with one or more secondary processes or energy sources that are fully coupled and synergistically affect part quality, functionality, and/or process performance. Historically, defining HM processes centered on process improvement rather than improvements to part quality or performance; however, the primary goal for the majority of hybrid-AM processes is to improve part quality and part performance rather than improve processing. Hybrid-AM processes are typically a cyclic process chain and are distinguished from postprocessing operations that do not meet the fully coupled criterion. Secondary processes and energy sources include subtractive and transformative manufacturing technologies, such as machining, remelting, peening, rolling, and friction stir processing (FSP). As interest in hybrid-AM grows, new economic and sustainability tools are needed as well as sensing technologies that better facilitate hybrid processing. Hybrid-AM has ushered in the next evolutionary step in AM and has the potential to profoundly change the way goods are manufactured.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Flynn, J. M. , Shokrani, A. , Newman, S. T. , and Dhokia, V. , 2016, “Hybrid Additive and Subtractive Machine Tools—Research and Industrial Developments,” Int. J. Mach. Tools Manuf., 101, pp. 79–101. [CrossRef]
Merklein, M. , Junker, D. , Schaub, A. , and Neubauer, F. , 2016, “Hybrid Additive Manufacturing Technologies—An Analysis Regarding Potentials and Applications,” Phys. Procedia, 83, pp. 549–559. [CrossRef]
Strong, D. , Sirichakwal, I. , Manogharan, G. P. , and Wakefield, T. , 2017, “Current State and Potential of Additive—Hybrid Manufacturing for Metal Parts,” Rapid Prototyping J., 23(3), pp. 577–588. [CrossRef]
Lorenz, K. A. , Jones, J. B. , Wimpenny, D. I. , and Jackson, M. R. , 2015, “A Review of Hybrid Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 10–12, pp. 96–108. https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-8-Lorenz.pdf
Lauwers, B. , Klocke, F. , Klink, A. , Tekkaya, A. E. , Neugebauer, R. , and Mcintosh, D. , 2014, “Hybrid Processes in Manufacturing,” CIRP Ann.-Manuf. Technol., 63(2), pp. 561–583. [CrossRef]
Klocke, F. , Roderburg, A. , and Zeppenfeld, C. , 2011, “Design Methodology for Hybrid Production Processes,” Procedia Eng., 9, pp. 417–430. [CrossRef]
Nau, B. , Roderburg, A. , and Klocke, F. , 2011, “Ramp-Up of Hybrid Manufacturing Technologies,” CIRP J. Manuf. Sci. Technol., 4(3), pp. 313–316. [CrossRef]
Schuh, G. , Kreysa, J. , and Orilski, S. , 2009, “Roadmap ‘Hybride Produktion’: Wie 1 + 1 = 3-Effekte in der Produktion maximiert werden können,” Z. Wirtsch. Fabrikbetr., 104(5), pp. 385–391. [CrossRef]
Chu, W. , Kim, C. , Lee, H. , Choi, J. , Park, J. , Song, J. , Jang, K. , and Ahn, S. , 2014, “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Technol., 1(1), pp. 75–92. [CrossRef]
Kozak, J. , and Rajurkar, K. P. , 2000, “Hybrid Machining Process Evaluation and Development,” Second International Conference on Machining and Measurements of Sculptured Surfaces, Kraków, Poland, pp. 501–536.
Ashby, M. F. , 2005, “Designing Hybrid Materials,” Materials Selection in Mechanical Design, M. F. Ashby , ed., Butterworth-Heinemann, Amsterdam, The Netherlands, pp. 339–377.
Kickelbick, G. , 2006, “Introduction to Hybrid Materials,” Hybrid Materials: Synthesis, Characterization, and Applications, G. Kickelbick , ed., Wiley, Weinheim, Germany, pp. 1–48. [CrossRef]
Shin, Y. C. , 2011, “Laser Assisted Machining,” PennWell Corporation, Tulsa, OK, accessed Aug. 3, 2016, https://www.industrial-lasers.com/articles/print/volume-26/issue-1/features/laser-assisted-machining.html
Xu, W. , and Zhang, L. , 2015, “Ultrasonic Vibration-Assisted Machining: Principle, Design and Application,” Adv. Manuf., 3(3), pp. 173–192. [CrossRef]
Menzies, I. , and Koshy, P. , 2008, “Assessment of Abrasion-Assisted Material Removal in Wire EDM,” CIRP Ann.-Manuf. Technol., 57(1), pp. 195–198. [CrossRef]
Valiev, R. Z. , Zehetbauer, M. J. , Estrin, Y. , Höppel, H. W. , Ivanisenko, Y. , Hahn, H. , Wilde, G. , Roven, H. J. , Sauvage, X. , and Langdon, T. G. , 2007, “The Innovation Potential of Bulk Nanostructured Materials,” Adv. Eng. Mater., 9(7), pp. 527–533. [CrossRef]
Brehl, D. E. , and Dow, T. A. , 2008, “Review of Vibration-Assisted Machining,” Precis. Eng., 32(3), pp. 153–172. [CrossRef]
Lauwers, B. , Bleicher, F. , Ten Haaf, P. , Vanparys, M. , Bernreiter, J. , Jacobs, T. , and Loenders, J. , 2010, “Investigation of the Process-Material Interaction in Ultrasonic Assisted Grinding of ZrO2 Based Ceramic Materials,” Fourth CIRP International Conference on High Performance Cutting, Gifu, Japan, Oct. 24–26, pp. 1–6. https://pdfs.semanticscholar.org/8a98/fecd76ae3fb96014f94949b6368666fadb53.pdf
Brecher, C. , Rosen, C. , and Emonts, M. , 2010, “Laser-Assisted Milling of Advanced Materials,” Phys. Procedia, 5(Pt. B), pp. 259–272. [CrossRef]
Brecher, C. , Emonts, M. , Rosen, C. , and Hermani, J. , 2011, “Laser-Assisted Milling of Advanced Materials,” Phys. Procedia, 12(Pt. A), pp. 599–606. [CrossRef]
Ding, H. , and Shin, Y. C. , 2010, “Laser-Assisted Machining of Hardened Steel Parts With Surface Integrity Analysis,” Int. J. Mach. Tools Manuf., 50(1), pp. 106–114. [CrossRef]
Jeon, Y. , and Lee, C. M. , 2012, “Current Research Trend on Laser Assisted Machining,” Int. J. Precis. Eng. Manuf., 13(2), pp. 311–317. [CrossRef]
Sun, S. , Brandt, M. , and Dargusch, M. S. , 2010, “Thermally Enhanced Machining of Hard-to-Machine Materials—A Review,” Int. J. Mach. Tools Manuf., 50(8), pp. 663–680. [CrossRef]
Kumar, M. , Melkote, S. , and Lahoti, G. , 2011, “Laser-Assisted Microgrinding of Ceramics,” CIRP Ann.-Manuf. Technol., 60(1), pp. 367–370. [CrossRef]
Wang, Z. Y. , and Rajurkar, K. P. , 2000, “Cryogenic Machining of Hard-to-Cut Materials,” Wear, 239(2), pp. 168–175. [CrossRef]
Ezugwu, E. O. , and Bonney, J. , 2004, “Effect of High-Pressure Coolant Supply When Machining Nickel-Base, Inconel 718, Alloy With Coated Carbide Tools,” J. Mater. Process. Technol., 153–154, pp. 1045–1050. [CrossRef]
Wertheim, R. , Rotberg, J. , and Ber, A. , 1992, “Influence of High-Pressure Flushing Through the Rake Face of the Cutting Tool,” CIRP Ann.-Manuf. Technol., 41(1), pp. 101–106. [CrossRef]
de Lacalle, L. N. L. , Pérez-Bilbatua, J. , Sánchez, A. J. , Llorente, I. J. , Gutiérrez, A. , and Albóniga, J. , 2000, “Using High Pressure Coolant in the Drilling and Turning of Low Machinability Alloys,” Int. J. Adv. Manuf. Technol., 16(2), pp. 85–91. [CrossRef]
Rajurkar, K. P. , Zhu, D. , McGeough, J. A. , Kozak, J. , and De Silva, A. , 1999, “New Developments in Electro-Chemical Machining,” CIRP Ann.-Manuf. Technol., 48(2), pp. 567–579. [CrossRef]
Kozak, J. , Zybura-Skrabalak, M. , and Skrabalak, G. , 2016, “Development of Advanced Abrasive Electrical Discharge Grinding (AEDG) System for Machining Difficult-to-Cut Materials,” Procedia CIRP, 42, pp. 872–877. [CrossRef]
Zhu, D. , Zeng, Y. B. , Xu, Z. Y. , and Zhang, X. Y. , 2011, “Precision Machining of Small Holes by the Hybrid Process of Electrochemical Removal and Grinding,” CIRP Ann.-Manuf. Technol., 60(1), pp. 247–250. [CrossRef]
Golabczak, A. , and Swiecik, R. , 2010, “Electro-Discharge Grinding: Energy Consumption and Internal Stresses in the Surface Layer,” 16th International Symposium on Electromachining (ISEM), Shanghai, China, Apr. 19–23, pp. 517–522. https://www.researchgate.net/profile/Robert_Swiecik/publication/272020304_Electro-discharge_Grinding_Energy_Consumption_and_Internal_Stresses_in_the_Surface_Layer/links/54feffbb0cf2eaf210b47420/Electro-discharge-Grinding-Energy-Consumption-and-Internal-Stresses-in-the-Surface-Layer.pdf
Koshy, P. , Jain, V. K. , and Lal, G. K. , 1997, “Grinding of Cemented Carbide With Electrical Spark Assistance,” J. Mater. Process. Technol., 72(1), pp. 61–68. [CrossRef]
Matsubara, K. , Miyahara, Y. , Horita, Z. , and Langdon, T. G. , 2003, “Developing Superplasticity in a Magnesium Alloy Through a Combination of Extrusion and ECAP,” Acta Mater., 51(11), pp. 3073–3084. [CrossRef]
Miyahara, Y. , Horita, Z. , and Langdon, T. G. , 2006, “Exceptional Superplasticity in an AZ61 Magnesium Alloy Processed by Extrusion and ECAP,” Mater. Sci. Eng. A, 420(1–2), pp. 240–244. [CrossRef]
CIRTES Stratoconception, 2017, “Stratoconception Process,” Stratoconception, Saint-Dié-des-Vosges, France, accessed Apr. 24, 2017, http://cirtes.com/en/stratoconception/
Williams, R. E. , and Melton, V. L. , 1998, “Abrasive Flow Finishing of Stereolithography Prototypes,” Rapid Prototyping J., 4(2), pp. 56–67. [CrossRef]
Williams, R. E. , Walczyk, D. F. , and Dang, H. T. , 2007, “Using Abrasive Flow Machining to Seal and Finish Conformal Channels in Laminated Tooling,” Rapid Prototyping J., 13(2), pp. 64–75. [CrossRef]
Azushima, A. , Kopp, R. , Korhonen, A. , Yang, D. Y. , Micari, F. , Lahoti, G. D. , Groche, P. , Yanagimoto, J. , Tsuji, N. , Rosochowski, A. , and Yanagida, A. , 2008, “Severe Plastic Deformation (SPD) Processes for Metals,” CIRP Ann.-Manuf. Technol., 57(2), pp. 716–735. [CrossRef]
Qian, Y. , Huang, J. , Zhang, H. , and Wang, G. , 2008, “Direct Rapid High-Temperature Alloy Prototyping by Hybrid Plasma-Laser Technology,” J. Mater. Process. Technol., 208(1–3), pp. 99–104. [CrossRef]
Lamikiz, A. , Sánchez, J. A. , López de Lacalle, L. N. , and Arana, J. L. , 2007, “Laser Polishing of Parts Built Up by Selective Laser Sintering,” Int. J. Mach. Tools Manuf., 47(12–13), pp. 2040–2050. [CrossRef]
Ramos-Grez, J. A. , and Bourell, D. L. , 2004, “Reducing Surface Roughness of Metallic Freeform-Fabricated Parts Using Non-Tactile Finishing Methods,” Int. J. Mater. Prod. Technol., 21(4), pp. 297–316. [CrossRef]
Yasa, E. , and Kruth, J. , 2011, “Application of Laser Re-Melting on Selective Laser Melting Parts,” Adv. Prod. Eng. Manage., 6(4), pp. 259–270. http://apem-journal.org/Archives/2011/APEM6-4_259-270.pdf
Yasa, E. , Deckers, J. , and Kruth, J. P. , 2011, “The Investigation of the Influence of Laser Re‐Melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts,” Rapid Prototyping J., 17(5), pp. 312–327. [CrossRef]
Yasa, E. , Kruth, J. P. , and Deckers, J. , 2011, “Manufacturing by Combining Selective Laser Melting and Selective Laser Erosion/Laser Re-Melting,” CIRP Ann.-Manuf. Technol., 60(1), pp. 263–266. [CrossRef]
Campanelli, S. L. , Casalino, G. , Contuzzi, N. , and Ludovico, A. D. , 2013, “Taguchi Optimization of the Surface Finish Obtained by Laser Ablation on Selective Laser Molten Steel Parts,” Procedia CIRP, 12, pp. 462–467. [CrossRef]
Sealy, M. P. , Madireddy, G. , Li, C. , and Guo, Y. B. , 2016, “Finite Element Modeling of Hybrid Additive Manufacturing by Laser Shock Peening,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 8–10, pp. 306–316. https://sffsymposium.engr.utexas.edu/sites/default/files/2016/021-Sealy.pdf
Prinz, F. B. , and Weiss, L. E. , 1993, “Method and Apparatus for Fabrication of Three-Dimensional Metal Articles by Weld Deposition,” U.S. Patent No. 5,207,371A. https://www.google.co.in/patents/US5207371
Hartmann, K. , Krishnan, R. , Merz, R. , Neplotnik, G. , Prinz, F. , and Schultz, L. , 1994, “Robot-Assisted Shape Deposition Manufacturing,” IEEE International Conference on Robotics and Automation (ROBOT), San Diego, CA, May 8–13, pp. 2890–2895.
Merz, R. , Prinz, F. B. , Ramaswami, K. , Terk, M. , and Weiss, L. E. , 1994, “Shape Deposition Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 8–10, pp. 1–8. https://sffsymposium.engr.utexas.edu/Manuscripts/1994/1994-01-Merz.pdf
Prinz, F. B. , Weiss, L. , Amon, C. , and Beuth, J. , 1995, “Processing, Thermal and Mechanical Issues in Shape Deposition Manufacturing,” Carnegie Mellon Carnegie Mellon University, Pittsburgh, PA, Technical Report No. EDRC 24-119-95. https://pdfs.semanticscholar.org/7a7a/6961f6dac7861db7de51e7680e9990a09e85.pdf
Gale, J. , Achuthan, A. , and Don, A. U. , 2016, “Material Property Enhancement in Additive Manufactured Materials Using an Ultrasonic Peening Technique,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 8–10.
Bamberg, J. , Hess, T. , Hessert, R. , and Satzger, W. , 2012, “Verfahren zum herstellen, reparieren oder austauschen eines bauteils mit verfestigen mittels druckbeaufschlagung,” Mtu Aero Engines Gmbh, Munich, Germany, Patent No. WO 2012152259 A1.
El-Wardany, T. I. , Lynch, M. E. , Viens, D. V. , and Grelotti, R. A. , 2014, “Turbine Disk Fabrication With In Situ Material Property Variation,” United Technologies Corporation, Farmington, CT, U.S. Patent No. US20140255198 A1 https://www.google.com/patents/US20140255198.
Kramer, K. J. , Bayramian, A. , El-dasher, B. S. , and Farmer, J. C. , 2014, “System and Method for Enhanced Additive Manufacturing,” Lawrence Livermore National Security, LLC, U.S. Patent No. US20140367894 A1. https://www.google.com/patents/US20140367894
Sidhu, J. , and Wescott, A. D. , 2016, “Additive Manufacturing and Integrated Impact Post-Treatment,” BAE Systems Inc., Farnborough, UK, Patent No. WO2016092253 A1. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092253
Wu, Z. , Li, Y. , Abbott, D. H. , Chen, X. , Broderick, T. F. , Marte, J. S. , Woodfield, A. P. I. , and Ott, E. A. , 2015, “Method for Manufacturing Objects Using Powder Products,” General Electric Company, U.S. Patent No. 20150283614 A1. http://google.com/patents/US20150283614?cl=fi
Kalentics, N. , Logé, R. , and Boillat, E. , 2017, “Method and Device for Implementing Laser Shock Peening or Warm Laser Shock Peening During Selective Laser Melting,” École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, U.S. Patent No. US2017/0087670 A1. http://www.google.ch/patents/US20170087670?hl=de&cl=en
Kalentics, N. , Boillat, E. , Peyre, P. , Gorny, C. , Kenel, C. , Leinenbach, C. , Jhabvala, J. , and Logé, R. , 2017, “3D Laser Shock Peening—A New Method for the 3D Control of Residual Stresses in Selective Laser Melting,” Mater. Des., 130, pp. 350–356. [CrossRef]
Colegrove, P. A. , Donoghue, J. , Martina, F. , Gu, J. , Prangnell, P. , and Hönnige, J. , 2017, “Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components,” Scr. Mater., 135, pp. 111–118. [CrossRef]
Martina, F. , Roy, M. J. , Szost, B. A. , Terzi, S. , Colegrove, P. A. , Williams, S. W. , Withers, P. J. , Meyer, J. , and Hofmann, M. , 2016, “Residual Stress of as-Deposited and Rolled Wire + Arc Additive Manufacturing Ti–6Al–4V Components,” Mater. Sci. Technol., 32(14), pp. 1439–1448. [CrossRef]
Donoghue, J. , Antonysamy, A. A. , Martina, F. , Colegrove, P. A. , Williams, S. W. , and Prangnell, P. B. , 2016, “The Effectiveness of Combining Rolling Deformation With Wire–Arc Additive Manufacture on β-Grain Refinement and Texture Modification in Ti–6Al–4V,” Mater. Charact., 114, pp. 103–114. [CrossRef]
Colegrove, P. A. , Martina, F. , Roy, M. J. , Szost, B. A. , Terzi, S. , Williams, S. W. , Withers, P. J. , and Jarvis, D. , 2014, “High Pressure Interpass Rolling of Wire + Arc Additively Manufactured Titanium Components,” Adv. Mater. Res., 996, pp. 694–700. [CrossRef]
Colegrove, P. A. , Coules, H. E. , Fairman, J. , Martina, F. , Kashoob, T. , Mamash, H. , and Cozzolino, L. D. , 2013, “Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling,” J. Mater. Process. Technol., 213(10), pp. 1782–1791. [CrossRef]
Martina, F. , Williams, S. W. , and Colegrove, P. , 2013, “Improved Microstructure and Increased Mechanical Properties of Additive Manufacture Produced Ti-6Al-4V by Interpass Cold Rolling,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, pp. 490–496. https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-38-Martina.pdf
Martina, F. , Colegrove, P. , Williams, S. W. , and Meyer, J. , 2015, “Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components,” Metall. Mater. Trans. A, 46(12), pp. 6103–6118. [CrossRef]
Zhang, H. O. , Rui, D. M. , Xie, Y. , and Wang, G. L. , 2013, “Study on Metamorphic Rolling Mechanism for Metal Hybrid Additive Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, pp. 188–189. https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-15-Zhang.pdf
Zhang, H. O. , Xie, Y. , Rui, D. M. , and Wang, G. L. , 2013, “Hybrid Deposition and Micro Rolling Manufacturing Method of Metallic Parts,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, pp. 267–281. https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-22-Zhang.pdf
Xie, Y. , Zhang, H. , Wang, G. , and Zhou, F. , 2014, “A Novel Metamorphic Mechanism for Efficient Additive Manufacturing of Components With Variable Wall Thickness,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 4–6, pp. 210–223. https://sffsymposium.engr.utexas.edu/sites/default/files/2014-019-Xie.pdf
Xie, Y. , Zhang, H. , and Zhou, F. , 2016, “Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism,” ASME J. Manuf. Sci. Eng., 138(11), p. 111002. [CrossRef]
Zhou, X. , Zhang, H. , Wang, G. , Bai, X. , Fu, Y. , and Zhao, J. , 2016, “Simulation of Microstructure Evolution During Hybrid Deposition and Micro-Rolling Process,” J. Mater. Sci., 51(14), pp. 6735–6749. [CrossRef]
Levy, G. N. , Schindel, R. , and Kruth, J. P. , 2003, “Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives,” CIRP Ann.-Manuf. Technol., 52(2), pp. 589–609. [CrossRef]
Hur, J. , Lee, K. , Zhu-hu , and Kim, J. , 2002, “Hybrid Rapid Prototyping System Using Machining and Deposition,” Comput.-Aided Des., 34(10), pp. 741–754. [CrossRef]
Jeng, J. , and Lin, M. , 2001, “Mold Fabrication and Modification Using Hybrid Processes of Selective Laser Cladding and Milling,” J. Mater. Process. Technol., 110(1), pp. 98–103. [CrossRef]
Akula, S. , and Karunakaran, K. P. , 2006, “Hybrid Adaptive Layer Manufacturing: An Intelligent Art of Direct Metal Rapid Tooling Process,” Rob. Comput.-Integr. Manuf., 22(2), pp. 113–123. [CrossRef]
Karunakaran, K. P. , Shanmuganathan, P. V. , Jadhav, S. J. , Bhadauria, P. , and Pandey, A. , 2000, “Rapid Prototyping of Metallic Parts and Moulds,” J. Mater. Process. Technol., 105(3), pp. 371–381. [CrossRef]
Choi, D. , Lee, S. H. , Shin, B. S. , Whang, K. H. , Song, Y. A. , Park, S. H. , and Jee, H. S. , 2001, “Development of a Direct Metal Freeform Fabrication Technique Using CO2 Laser Welding and Milling Technology,” J. Mater. Process. Technol., 113(1–3), pp. 273–279. [CrossRef]
Friel, R. J. , and Harris, R. A. , 2013, “Ultrasonic Additive Manufacturing—A Hybrid Production Process for Novel Functional Products,” Procedia CIRP, 6, pp. 35–40. [CrossRef]
Karunakaran, K. P. , Suryakumar, S. , Pushpa, V. , and Akula, S. , 2010, “Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing,” Rob. Comput.-Integr. Manuf., 26(5), pp. 490–499. [CrossRef]
Kerschbaumer, M. , and Ernst, G. , 2004, “Hybrid Manufacturing Process for Rapid High Performance Tooling Combining High Speed Milling and Laser Cladding,” 23rd International Congress on Applications of Lasers and Electro-Optics (ICALEO), San Francisco, CA, pp. 1–10.
Kruth, J. P. , Leu, M. C. , and Nakagawa, T. , 1998, “Progress in Additive Manufacturing and Rapid Prototyping,” CIRP Ann.-Manuf. Technol., 47(2), pp. 525–540. [CrossRef]
Liou, F. , Slattery, K. , Kinsella, M. , Newkirk, J. , Chou, H. N. , and Landers, R. , 2006, “Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 14–16, pp. 1–11. https://pdfs.semanticscholar.org/3b34/41e5b04cc029cf822c3189fed3e914f57deb.pdf
Liou, F. W. , Choi, J. , Landers, R. G. , Janardhan, V. , Balakrishnan, S. N. , and Agarwal, S. , 2001, “Research and Development of a Hybrid Rapid Manufacturing Process,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 6–8, pp. 138–145. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.5755&rep=rep1&type=pdf
Nagel, J. K. S. , and Liou, F. W. , 2012, “Hybrid Manufacturing System Design and Development,” Manufacturing System, F. A. Aziz , ed., InTech, Rijeka, Croatia, pp. 223–246. [CrossRef]
Newman, S. T. , Zhu, Z. , Dhokia, V. , and Shokrani, A. , 2015, “Process Planning for Additive and Subtractive Manufacturing Technologies,” CIRP Ann.-Manuf. Technol., 64(1), pp. 467–470. [CrossRef]
Song, Y. , and Park, S. , 2006, “Experimental Investigations Into Rapid Prototyping of Composites by Novel Hybrid Deposition Process,” J. Mater. Process. Technol., 171(1), pp. 35–40. [CrossRef]
Song, Y. A. , Park, S. , Jee, H. , Choi, D. , and Shin, B. , 1999, “3D Welding and Milling—A Direct Approach for Fabrication of Injection Molds,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 9–11, pp. 793–800. https://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-092-Song.pdf
Pridham, M. , and Thomson, G. , 1993, “Part Fabrication Using Laser Machining and Welding,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 9–11, pp. 74–80. https://sffsymposium.engr.utexas.edu/Manuscripts/1993/1993-08-Pridham.pdf
Sreenathbabu, A. , Karunakaran, K. P. , and Amarnath, C. , 2005, “Statistical Process Design for Hybrid Adaptive Layer Manufacturing,” Rapid Prototyping J., 11(4), pp. 235–248. [CrossRef]
Zhu, Z. , Dhokia, V. , Newman, S. T. , and Nassehi, A. , 2014, “Application of a Hybrid Process for High Precision Manufacture of Difficult to Machine Prismatic Parts,” Int. J. Adv. Manuf. Technol., 74(5–8), pp. 1115–1132. [CrossRef]
Kulkarni, P. , and Dutta, D. , 1999, “On the Integration of Layered Manufacturing and Material Removal Processes,” ASME J. Manuf. Sci. Eng., 122(1), pp. 100–108. [CrossRef]
Karunakaran, K. P. , Sreenathbabu, A. , and Pushpa, V. , 2004, “Hybrid Layered Manufacturing: Direct Rapid Metal Tool-Making Process,” Proc. Inst. Mech. Eng., Part B, 218(12), pp. 1657–1665. [CrossRef]
Xinhong, X. , Haiou, Z. , Guilan, W. , and Guoxian, W. , 2010, “Hybrid Plasma Deposition and Milling for an Aeroengine Double Helix Integral Impeller Made of Superalloy,” Rob. Comput.-Integr. Manuf., 26(4), pp. 291–295. [CrossRef]
Klocke, F. , Wirtz, H. , and Meiners, W. , 1996, “Direct Manufacturing of Metal Prototypes and Prototype Tools,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, pp. 141–148. https://sffsymposium.engr.utexas.edu/Manuscripts/1996/1996-18-Klocke.pdf
Yamazaki, T. , 2016, “Development of a Hybrid Multi-Tasking Machine Tool: Integration of Additive Manufacturing Technology With CNC Machining,” Procedia CIRP, 42, pp. 81–86. [CrossRef]
Song, Y. , Park, S. , Choi, D. , and Jee, H. , 2005, “3D Welding and Milling—Part I: A Direct Approach for Freeform Fabrication of Metallic Prototypes,” Int. J. Mach. Tools Manuf., 45(9), pp. 1057–1062. [CrossRef]
Fessler, J. R. , Merz, R. , Nickel, A. H. , Prinz, F. B. , and Weiss, L. E. , 1996, “Laser Deposition of Metals for Shape Deposition Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, pp. 117–124. https://sffsymposium.engr.utexas.edu/Manuscripts/1996/1996-15-Fessler.pdf
Ichimura, M. , Urushisaki, Y. , Amaya, K. , Chappell, S. , Honnami, M. , Mochizuki, M. , and Chung, U. , 2014, “Medical Implant Manufacture Using the Hybrid Metal Laser Sintering With Machining Process,” 15th International Conference on Precision Engineering (ICPE), Kanazawa, Japan, July 22–25, pp. 1–2.
Brown, D. , Li, C. , Liu, Z. Y. , Fang, X. Y. , and Guo, Y. B. , 2017, “Surface Integrity of Inconel 718 by Hybrid Selective Laser Melting and Milling,” Virtual Phys. Prototyping, 13(1), pp. 26–31. [CrossRef]
Xiong, X. , Zhang, H. , and Wang, G. , 2009, “Metal Direct Prototyping by Using Hybrid Plasma Deposition and Milling,” J. Mater. Process. Technol., 209(1), pp. 124–130. [CrossRef]
Amon, C. H. , Beuth, J. L. , Weiss, L. E. , Merz, R. , and Prinz, F. B. , 1998, “Shape Deposition Manufacturing With Microcasting: Processing, Thermal and Mechanical Issues,” ASME J. Manuf. Sci. Eng., 120(3), pp. 656–665. [CrossRef]
Schwope, L. , Friel, R. J. , Johnson, K. E. , and Harris, R. A. , 2009, “Field Repair and Replacement Part Fabrication of Military Components Using Ultrasonic Consolidation Cold Metal Deposition,” Applied Vehicle Technology Panel (AVT) Specialists' Meeting, Bonn, Germany Oct. 19–22, Paper No. RTO-MP-AVT-163. https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/14489/3/MP-AVT-163-22.pdf
Mizukami, Y. , and Osakada, K. , 2002, “Three-Dimensional Fabrication of Metallic Parts and Molds Using Hybrid Process of Powder Layer Compaction and Milling,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 5–7, pp. 474–481. http://edge.rit.edu/edge/P10551/public/SFF/SFF%202002%20Proceedings/2002%20SFF%20Papers/54-Mizukami.pdf
ISO/ASTM International, 2016, “Standard Terminology for Additive Manufacturing—General Principles—Terminology,” Committee F42 on Additive Manufacturing Technologies, ASTM International, West Conshohocken, PA, Standard No. ISO/ASTM52900 - 15. https://www.astm.org/Standards/ISOASTM52900.htm
Wang, Z. , Liu, R. , Sparks, T. , Liu, H. , and Liou, F. , 2015, “Stereo Vision Based Hybrid Manufacturing Process for Precision Metal Parts,” Precis. Eng., 42, pp. 1–5. [CrossRef]
America Makes, 2016, “Improving Productivity by Integrating Automatic Finishing With Direct Metal Additive Manufacturing—Success Story: Hybrid Direct Manufacturing: Integrating Additive and Subtractive Methods,” America Makes, Youngstown, OH, accessed Nov. 9, 2017 https://www.americamakes.us/wp-content/uploads/sites/2/2017/06/4029_SuccessStory.pdf
Yasa, E. , and Kruth, J. P. , 2010, “Investigation of Laser and Process Parameters for Selective Laser Erosion,” Precis. Eng., 34(1), pp. 101–112. [CrossRef]
Shiomi, M. , Osakada, K. , Nakamura, K. , Yamashita, T. , and Abe, F. , 2004, “Residual Stress Within Metallic Model Made by Selective Laser Melting Process,” CIRP Ann.-Manuf. Technol., 53(1), pp. 195–198. [CrossRef]
Ding, K. , and Ye, L. , 2006, Laser Shock Peening: Performance and Process Simulation, Woodhead Publishing, Cambridge, UK. [CrossRef]
AlMangour, B. , and Yang, J. , 2016, “Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing,” Mater. Des., 110, pp. 914–924. [CrossRef]
Salvati, E. , Lunt, A. J. G. , Ying, S. , Sui, T. , Zhang, H. J. , Heason, C. , Baxter, G. , and Korsunsky, A. M. , 2017, “Eigenstrain Reconstruction of Residual Strains in an Additively Manufactured and Shot Peened Nickel Superalloy Compressor Blade,” Comput. Methods Appl. Mech. Eng., 320, pp. 335–351. [CrossRef]
Kanger, C. , Hadidi, H. , Akula, S. , Sandman, C. , Quint, J. , Alsunni, M. , Underwood, R. P. , Slafter, C. , Sonderup, J. , Spilinek, M. , Casias, J. , Rao, P. , and Sealy, M. P. , 2017, “Effect of Process Parameters and Shot Peening on Mechanical Behavior of ABS Parts Manufactured by Fused Filament Fabrication (FFF),” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 7–9, pp. 1–15. https://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/EffectofProcessParametersandShotPeeningonM.pdf
Montazeri, M. , Madireddy, G. , Curtis, E. , Underwood, N. , Berger, J. , Al Khayari, Y. , Marth, B. , Smith, B. , Christy, S. , Krueger, K. , Sealy, M. P. , and Rao, P. , 2017, “Effect of Process Parameters and Shot Peening on the Tensile Strength and Deflection of Polymer Parts Made Using Mask Image Projection Stereolithography (MIP-SLA),” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 7–9, pp. 1–10. https://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/EffectofProcessParametersandShotPeeningont.pdf
Book, T. A. , and Sangid, M. D. , 2016, “Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process,” JOM, 68(7), pp. 1780–1792. [CrossRef]
Gibson, I. , Rosen, D. W. , and Stucker, B. , 2015, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., Springer, New York, pp. 1–498.
Lunney, J. G. , 1995, “Pulsed Laser Deposition of Metal and Metal Multilayer Films,” Appl. Surf. Sci., 86(1), pp. 79–85. [CrossRef]
Boyd, I. W. , 1996, “Thin Film Growth by Pulsed Laser Deposition,” Ceram. Int., 22(5), pp. 429–434. [CrossRef]
Morgan, R. , Sutcliffe, C. , and O'Neill, W. , 2001, “Experimental Investigation of Nanosecond Pulsed Nd:YAG Laser Re-Melted Pre-Placed Powder Beds,” Rapid Prototyping J., 7(3), pp. 159–172. [CrossRef]
Zhou, Y. C. , Yang, Z. Y. , and Zheng, X. J. , 2003, “Residual Stress in PZT Thin Films Prepared by Pulsed Laser Deposition,” Surf. Coat. Technol., 162(2–3), pp. 202–211. [CrossRef]
Palanivel, S. , Nelaturu, P. , Glass, B. , and Mishra, R. S. , 2015, “Friction Stir Additive Manufacturing for High Structural Performance Through Microstructural Control in an Mg Based WE43 Alloy,” Mater. Des., 65, pp. 934–952. [CrossRef]
Francis, R. , Newkirk, J. W. , and Liou, F. , 2014, “Investigation of Forged-Like Microstructure Produced by a Hybrid Manufacturing Process,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 4–6, pp. 484–499. https://sffsymposium.engr.utexas.edu/sites/default/files/2014-041-Francis.pdf
Thompson, M. K. , Moroni, G. , Vaneker, T. , Fadel, G. , Campbell, R. I. , Gibson, I. , Bernard, A. , Schulz, J. , Graf, P. , Ahuja, B. , and Martina, F. , 2016, “Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints,” CIRP Ann.-Manuf. Technol., 65(2), pp. 737–760. [CrossRef]
MacDonald, E. , Salas, R. , Espalin, D. , Perez, M. , Aguilera, E. , Muse, D. , and Wicker, R. B. , 2014, “3D Printing for the Rapid Prototyping of Structural Electronics,” IEEE Access, 2, pp. 234–242. [CrossRef]
Vaezi, M. , Chianrabutra, S. , Mellor, B. , and Yang, S. , 2013, “Multiple Material Additive Manufacturing—Part 1: A Review,” Virtual Phys. Prototyping, 8(1), pp. 19–50. [CrossRef]
Huang, P. , Deng, D. , and Chen, Y. , 2013, “Modeling and Fabrication of Heterogeneous Three-Dimensional Objects Based on Additive Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, pp. 215–230. https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-17-Huang.pdf
Zhou, C. , Chen, Y. , Yang, Z. , and Khoshnevis, B. , 2011, “Development of a Multi-Material Mask-Image-Projection-Based Stereolithography for the Fabrication of Digital Materials,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 8–10, pp. 65–80. https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-06-Zhou.pdf
Gaynor, A. T. , Meisel, N. A. , Williams, C. B. , and Guest, J. K. , 2014, “Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing,” ASME J. Manuf. Sci. Eng., 136(6), p. 061015. [CrossRef]
Li, J. , Wasley, T. , Nguyen, T. T. , Ta, V. D. , Shephard, J. D. , Stringer, J. , Smith, P. , Esenturk, E. , Connaughton, C. , and Kay, R. , 2016, “Hybrid Additive Manufacturing of 3D Electronic Systems,” J. Micromech. Microeng., 26(10), p. 105005.
Niendorf, T. , Leuders, S. , Riemer, A. , and Schwarze, D. , 2014, “Functionally Graded Alloys Obtained by Additive Manufacturing,” Adv. Eng. Mater., 16(7), pp. 857–861. [CrossRef]
Wu, S. , Yang, C. , Hsu, W. , and Lin, L. , 2015, “3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors,” Microsyst. Nanoeng., 1, p. 15013. [CrossRef]
Wohlers, T. , and Caffrey, T. , 2015, Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, CO, pp. 1–314.
Manogharan, G. , Wysk, R. A. , and Harrysson, O. L. A. , 2016, “Additive Manufacturing–Integrated Hybrid Manufacturing and Subtractive Processes: Economic Model and Analysis,” Int. J. Comput. Integr. Manuf., 29(5), pp. 473–488. [CrossRef]
NIST, 2013, “Measurement Science Roadmap for Metal-Based Additive Manufacturing,” U.S. Department of Commerce, Gaithersburg, MD, Workshop Summary Report. https://www.nist.gov/sites/default/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf
Hu, D. , and Kovacevic, R. , 2003, “Sensing, Modeling and Control for Laser-Based Additive Manufacturing,” Int. J. Mach. Tools Manuf., 43(1), pp. 51–60. [CrossRef]
Jacobsmühlen, J. Z. , Kleszczynski, S. , Schneider, D. , and Witt, G. , 2013, “High Resolution Imaging for Inspection of Laser Beam Melting Systems,” IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, May 6–9, pp. 707–712.
Barua, S. , Sparks, T. , and Liou, F. , 2011, “Development of Low‐Cost Imaging System for Laser Metal Deposition Processes,” Rapid Prototyping J., 17(3), pp. 203–210. [CrossRef]
Krauss, H. , Eschey, C. , and Zaeh, M. F. , 2012, “Thermography for Monitoring the Selective Laser Melting Process,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 6–8, pp. 999–1014. https://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-76-Krauss.pdf
Rieder, H. , Dillhöfer, A. , Spies, M. , Bamberg, J. , and Hess, T. , 2014, “Online Monitoring of Additive Manufacturing Processes Using Ultrasound,” 11th European Conference on Non-Destructive Testing (ECNDT), Prague, Czech Republic, Oct. 6–10, pp. 6–10. http://www.ndt.net/events/ECNDT2014/app/content/Paper/259_Spies.pdf
Krauss, H. , Zeugner, T. , and Zaeh, M. F. , 2014, “Layerwise Monitoring of the Selective Laser Melting Process by Thermography,” Phys. Procedia, 56, pp. 64–71. [CrossRef]
Melvin , L. S., III , Das, S. , and Beaman, S. , 1994, “Video Microscopy of Selective Laser Sintering,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 8–10, pp. 34–41. https://sffsymposium.engr.utexas.edu/Manuscripts/1994/1994-05-Melvin.pdf
Purtonen, T. , Kalliosaari, A. , and Salminen, A. , 2014, “Monitoring and Adaptive Control of Laser Processes,” Phys. Procedia, 56, pp. 1218–1231. [CrossRef]
Tapia, G. , and Elwany, A. , 2014, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” ASME J. Manuf. Sci. Eng., 136(6), p. 060801. [CrossRef]
Foster, B. K. , Reutzel, E. W. , Nassar, A. R. , Dickman, C. J. , and Hall, B. T. , 2015, “A Brief Survey of Sensing for Metal-Based Powder Bed Fusion Additive Manufacturing,” Proc. SPIE, 9489, pp. 1–9.
Reutzel, E. W. , and Nassar, A. R. , 2015, “A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directed-Energy, Metal-Based Additive Manufacturing,” Rapid Prototyping J., 21(2), pp. 159–167. [CrossRef]
Everton, S. K. , Hirsch, M. , Stravroulakis, P. , Leach, R. K. , and Clare, A. T. , 2016, “Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing,” Mater. Des., 95, pp. 431–445. [CrossRef]
Grasso, M. , and Colosimo, B. M. , 2017, “Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review,” Meas. Sci. Technol., 28(4), p. 044005. [CrossRef]
Grasso, M. , Laguzza, V. , Semeraro, Q. , and Colosimo, B. , 2016, “In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis,” ASME J. Manuf. Sci. Eng., 139(5), p. 051001. [CrossRef]
Mani, M. , Lane, B. M. , Donmez, M. A. , Feng, S. C. , and Moylan, S. P. , 2017, “A Review on Measurement Science Needs for Real-Time Control of Additive Manufacturing Metal Powder Bed Fusion Processes,” Int. J. Prod. Res., 55(5), pp. 1400–1418. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

HM methodologies. Modified from Refs. [5] and [8].

Grahic Jump Location
Fig. 2

HM processes: (a) assisted HM processes and (b) mixed or combined HM processes. Adapted from Refs. [1316].

Grahic Jump Location
Fig. 6

Cross-sectional optical microscopy image of (a) only-SLM part and (b) SLM with laser remelting [43] (Reprinted with permission from Production Engineering Institute (PEI), @ 2011)

Grahic Jump Location
Fig. 7

Laser-assisted plasma deposition

Grahic Jump Location
Fig. 9

Experimentally measured residual stress (hole drilling technique) on austenitic SS 316 L after hybrid-AM by LSP using a concept M2 PBF printer: (a) 40% and (b) 80% overlap ratios. Circles indicate depth of laser peened layers. Modified from Ref. [59].

Grahic Jump Location
Fig. 11

Hybrid-AM using SP

Grahic Jump Location
Fig. 12

Hybrid-AM using PLD that combines printing and peening using a single laser source

Grahic Jump Location
Fig. 13

Microstructural grain refinement during hybrid-AM by rolling

Grahic Jump Location
Fig. 5

Selective laser remelting of SLM printed part

Grahic Jump Location
Fig. 4

Selective laser erosion of SLM printed part

Grahic Jump Location
Fig. 15

Hybrid-AM material, structure, and function: (a) material complexity—gradient material properties (i.e., magnetism) from DED (sample provided by Optomec), (b) structural complexity—hybrid microstructure by changing process conditions in SLM (Reprinted with permission from Niendorf et al. [129]. Copyright 2014 by Wiley.), (c) functional complexity—hybrid function smart cap using fused deposition technology (Reprinted with permission from Wu et al. [130]. Copyright 2015 by Springer Nature.)

Grahic Jump Location
Fig. 16

New hybrid-AM systems since 2015: (a) LENS 3D metal hybrid controlled atmosphere system by Optomec (Albuquerque, NM), (b) Lumex Avance-60 by Matsuura (Fukui, Japan), (c) 3Dn system with an nMill™ attachment by nScrypt (Orlando, FL), and (d) Hydra series by Hyrel 3D (Atlanta, GA)

Grahic Jump Location
Fig. 3

Schematic of a hybrid-AM machining process on (a) side surface and (b) top surface

Grahic Jump Location
Fig. 10

Hybrid-AM using UP

Grahic Jump Location
Fig. 14

Intralayer friction stir AM

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In