0
Research Papers

An Eulerian Orthogonal Cutting Model for Unidirectional Fiber-Reinforced Polymers

[+] Author and Article Information
Shengqi Zhang

Department of Mechanical
& Aerospace Engineering,
North Carolina State University,
911 Oval Drive, Campus Box 7910,
Raleigh, NC 27695-7910
e-mail: szhang15@ncsu.edu

John S. Strenkowski

Professor
Department of Mechanical
& Aerospace Engineering,
North Carolina State University,
911 Oval Drive, Campus Box 7910,
Raleigh, NC 27695-7910
e-mail: jsstren@ncsu.edu

1Corresponding author.

Manuscript received March 28, 2017; final manuscript received November 27, 2017; published online January 8, 2018. Assoc. Editor: Tony Schmitz.

J. Manuf. Sci. Eng 140(2), 021017 (Jan 08, 2018) (8 pages) Paper No: MANU-17-1175; doi: 10.1115/1.4038612 History: Received March 28, 2017; Revised November 27, 2017

An Eulerian model is described that simulates orthogonal cutting of unidirectional fiber-reinforced polymer (FRP) composites. The continuous finite element method (FEM) and the discontinuous Galerkin (DG) method are combined to solve the governing equations. A progressive damage model is implemented to predict subsurface damage in the composite. A correction factor that accounts for fiber curvature is included in the model that incorporates the influence of fiber bending. It was found that fiber orientation has a dominant influence on both the cutting forces and subsurface damage. Good agreement was found between predicted cutting forces and subsurface damage and published experimental observations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Topics: Fibers , Cutting , Damage , Polymers
Your Session has timed out. Please sign back in to continue.

References

Rao, G. V. G. , Mahajan, P. , and Bhatnagar, N. , 2008, “ Three-Dimensional Macro-Mechanical Finite Element Model for Machining of Unidirectional-Fiber Reinforced Polymer Composites,” Mater. Sci. Eng. A, 498(1–2), pp. 142–149. [CrossRef]
Phadnis, V. A. , Makhdum, F. , Roy, A. , and Silberschmidt, V. V. , 2013, “ Drilling in Carbon/Epoxy Composites: Experimental Investigations and Finite Element Implementation,” Compos. Part A, 47(1), pp. 41–51. [CrossRef]
Usui, S. , Wadell, J. , and Marusich, T. , 2014, “ Finite Element Modeling of Carbon Fiber Composite Orthogonal Cutting and Drilling,” Procedia CIRP, 14, pp. 211–216. [CrossRef]
Santiuste, C. , Miguelez, H. , and Soldani, X. , 2011, “ Out-of-Plane Failure Mechanisms in LFRP Composite Cutting,” Compos. Struct., 93(11), pp. 2706–2713. [CrossRef]
Bhatnagar, N. , Nayak, D. , Singh, I. , Chouhan, H. , and Mahajan, P. , 2004, “ Determination of Machining-Induced Damage Characteristics of Fiber Reinforced Plastic Composite Laminates,” Mater. Manuf. Processes, 19(6), pp. 1009–1023. [CrossRef]
Iliescu, D. , Gehin, D. , Iordanoff, I. , Girot, F. , and Gutierrez, M. , 2010, “ A Discrete Element Method for the Simulation´ of CFRP Cutting,” Compos. Sci. Technol., 70(1), pp. 73–80. [CrossRef]
Nayak, D. , and Singh, I. , 2004, “ An Analysis of Machining Induced Damages in FRP Composites a Micromechanics Finite Element Approach,” Materials Processing and Design: Modeling, Simulation and Applications, American Institute of Physics, College Park, MD.
Rao, G. V. G. , Mahajan, P. , and Bhatnagar, N. , 2007, “ Micro-Mechanical Modeling of Machining of FRP Composites Cutting Force Analysis,” Compos. Sci. Technol., 67(3–4), pp. 579–593. [CrossRef]
Venu Gopala Rao, G. , Mahajan, P. , and Bhatnagar, N. , 2007, “ Machining of UD-GFRP Composites Chip Formation Mechanism,” Compos. Sci. Technol., 67(11–12), pp. 2271–2281. [CrossRef]
Dandekar, C. R. , and Shin, Y. C. , 2008, “ Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage,” ASME J. Manuf. Sci. Eng., 130(5), p. 051016. [CrossRef]
Calzada, K. A. , Kapoor, S. G. , DeVor, R. E. , Samuel, J. , and Srivastava, A. K. , 2012, “ Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites,” J. Manuf. Processes, 14(2), pp. 141–149. [CrossRef]
Abena, A. , Soo, S. L. , and Essa, K. , 2015, “ A Finite Element Simulation for Orthogonal Cutting of UD-CFRP Incorporating a Novel Fibre-Matrix Interface Model,” Procedia CIRP, 31, pp. 539–544. [CrossRef]
Arola, D. , and Ramulu, M. , 1997, “ Orthogonal Cutting of Fiber-Reinforced Composites: A Finite Element Analysis,” Int. J. Mech. Sci., 39(5), pp. 597–613. [CrossRef]
Daniel, I. M. , and Ishai, O. , 2005, Engineering Mechanics of Composite Materials, 2nd ed, Oxford University Press, Oxford, UK.
Arola, D. , Sultan, M. B. , and Ramulu, M. , 2002, “ Finite Element Modeling of Edge Trimming Fiber Reinforced Plastics,” ASME J. Manuf. Sci. Eng., 124(1), pp. 32–41. [CrossRef]
Ramesh, M. V. , Seetharamu, K. N. , Ganesan, N. , and Sivakumar, M. S. , 1998, “ Analysis of Machining of FRPs Using FEM,” Int. J. Mach. Tools Manuf., 38(12), pp. 1531–1549. [CrossRef]
Mahdi, M. , and Zhang, L. , 2001, “ A Finite Element Model for the Orthogonal Cutting of Fiber-Reinforced Composite Materials,” J. Mater. Process. Technol., 113(1–3), pp. 373–377. [CrossRef]
Nayak, D. , Bhatnagar, N. , and Mahajan, P. , 2005, “ Machining Studies of Ud-Frp Composites—Part 2: Finite Element Analysis,” Mach. Sci. Technol., 9(4), pp. 503–528. [CrossRef]
Lasri, L. , Nouari, M. , and El Mansori, M. , 2009, “ Modelling of Chip Separation in Machining Unidirectional FRP Composites by Stiffness Degradation Concept,” Compos. Sci. Technol., 69(5), pp. 684–692. [CrossRef]
Lasri, L. , Nouari, M. , and Mansori, M. E. , 2011, “ Wear Resistance and Induced Cutting Damage of Aeronautical FRP Components Obtained by Machining,” Wear, 271(9–10), pp. 2542–2548. [CrossRef]
Xu, J. , and El Mansori, M. , 2016, “ Cutting Modeling of Hybrid CFRP/Ti Composite With Induced Damage Analysis,” Materials, 9(1), p. 22. [CrossRef]
Hashin, Z. , and Rotem, A. , 1973, “ A Fatigue Failure Criterion for Fiber Reinforced Materials,” J. Compos. Mater., 7(4), pp. 448–464. [CrossRef]
Hashin, Z. , 1981, “ Fatigue Failure Criteria for Unidirectional Fiber Composites,” ASME J. Appl. Mech., 48(4), pp. 846–852.
Santiuste, C. , Soldani, X. , and Miguelez, M. H. , 2010, “ Machining FEM Model of Long Fiber Composites for Aeronautical Components,” Compos. Struct., 92(3), pp. 691–698. [CrossRef]
Soldani, X. , Santiuste, C. , Munoz-Sanchez, A. , and Miguelez, M. , 2011, “ Influence of Tool Geometry and Numerical Parameters When Modeling Orthogonal Cutting of LFRP Composites,” Compos. Part A, 42(9), pp. 1205–1216. [CrossRef]
Camanho, P. , and Davila, C. , 2002, “ Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” NASA Center for Aerospace Information (CASI), Hanover, MD, Report No. NASA/TM-2002-211737. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020053651.pdf
Zenia, S. , Ben Ayed, L. , Nouari, M. , and Delamzire, A. , 2015, “ Numerical Analysis of the Interaction Between the Cutting Forces, Induced Cutting Damage, and Machining Parameters of CFRP Composites,” Int. J. Adv. Manuf. Technol., 78(1–4), pp. 465–480. [CrossRef]
Zienkiewicz, O. C. , Jain, P. C. , and Onate, E. , 1978, “ Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions,” Int. J. Solids Struct., 14(1), pp. 15–38. [CrossRef]
Strenkowski, J. S. , and Moon, K. J. , 1990, “ Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Metal Cutting,” J. Eng. Ind., 112(4), pp. 313–318. [CrossRef]
Zhang, L. C. , Zhang, H. J. , and Wang, X. M. , 2001, “ A Force Prediction Model for Cutting Unidirectional Fibre-Reinforced Plastics,” Mach. Sci. Technol., 5(3), pp. 293–305. [CrossRef]
Lapczyk, I. , and Hurtado, J. A. , 2007, “ Progressive Damage Modeling in Fiber-Reinforced Materials,” Compos. Part A, 38(11), pp. 2333–2341. [CrossRef]
Van Der Meer, F. P. , and Sluys, L. J. , 2009, “ Continuum Models for the Analysis of Progressive Failure in Composite Laminates,” J. Compos. Mater., 43(20), pp. 2131–2156. [CrossRef]
Budiansky, B. , and Fleck, N. A. , 1994, “ Compressive Kinking of Fiber Composites: A Topical Review,” ASME Appl. Mech. Rev., 47(6S), pp. S246–S250. [CrossRef]
Hsiao, H. M. , and Daniel, I. M. , 1998, “ Strain Rate Behavior of Composite Materials,” Compos. Part B, 29(5), pp. 521–533. [CrossRef]
Benson, D. J. , 1997, “ A Mixture Theory for Contact in Multi-Material Eulerian Formulations,” Comput. Methods Appl. Mech. Eng., 140(1–2), pp. 59–86. [CrossRef]
Benson, D. J. , 2008, “ Momentum Advection on Unstructured Staggered Quadrilateral Meshes,” Int. J. Numer. Methods Eng., 75(13), pp. 1549–1580. [CrossRef]
Belytschko, T. , Liu, W. K. , Moran, B. , and Elkhodary, K. , 2014, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, West Sussex, UK.
Wang, D. H. , Ramulu, M. , and Arola, D. , 1995, “ Orthogonal Cutting Mechanisms of Graphite/Epoxy Composite. Part I: Unidirectional Laminate,” Int. J. Mach. Tools Manuf., 35(12), pp. 1623–1638. [CrossRef]
Geuzaine, C. , and Remacle, J.-F. , 2016, “ Gmsh Reference Manual,” Gmsh 3.0.

Figures

Grahic Jump Location
Fig. 1

Boundary conditions and parameters for the model

Grahic Jump Location
Fig. 2

Data structures for the continuous FEM and the DG method

Grahic Jump Location
Fig. 6

Predicted reaction forces and damage at different times for θ = 30 deg, 60 deg, and 90 deg

Grahic Jump Location
Fig. 7

Predicted reaction forces and damage at different times for θ = 120 deg and 150 deg

Grahic Jump Location
Fig. 3

Mesh used for simulation of orthogonal cutting IM6/3501-4 CFRP

Grahic Jump Location
Fig. 8

Comparison of predicted and experimental cutting forces for different fiber angles

Grahic Jump Location
Fig. 4

Predicted curvature and direction of fibers with different initial fiber angles in the workpiece at t = 10 ms

Grahic Jump Location
Fig. 5

Experimental observations [6] of the bending of fibers with different initial fiber angles. The arrangement of fiber angles follows the same order as in Fig. 4.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In