0
Research Papers

Mechanics-Based Integrated Product and Process Design for Incremental Forming

[+] Author and Article Information
Rakesh Lingam

Department of Mechanical and
Aerospace Engineering,
Indian Institute of Technology Hyderabad,
Kandi 502 285, Telangana, India
e-mail: me13p1009@iith.ac.in

Ankush Bansal

Department of Mechanical and
Aerospace Engineering,
Indian Institute of Technology Hyderabad,
Kandi 502 285, Telangana, India
e-mail: me11b007@iith.ac.in

Om Prakash

Boeing Research and Technology-India Centre,
3rd Floor, Block B, RMZ Infinity,
Old Madras Road,
Bengaluru 560 016, India

N. Venkata Reddy

Department of Mechanical and
Aerospace Engineering,
Indian Institute of Technology Hyderabad,
Kandi 502 285, Telangana, India
e-mail: nvr@iith.ac.in

Manuscript received May 1, 2017; final manuscript received August 22, 2017; published online January 3, 2018. Assoc. Editor: Tony Schmitz.

J. Manuf. Sci. Eng 140(2), 021016 (Jan 03, 2018) (11 pages) Paper No: MANU-17-1297; doi: 10.1115/1.4038600 History: Received May 01, 2017; Revised August 22, 2017

Incremental sheet forming (ISF) is a low cost, die-less forming process suitable for low volume production. In case of components with multiple features, the accuracy of formed component depends on the sequence in which the features are formed. In addition, sheet spring-back, tool deflection, and rigid-body displacement (RBD) also affect the accuracy of formed components. Predicting the component geometry using finite element analysis (FEA) is computationally expensive and time consuming. Simple mechanics-based methodology is presented in this work to predict the geometry of components having single, multiple features, and high-wall angle components formed using single and/or multistage forming. Predictions using proposed methodology are used to select the best forming sequence in case of multiple feature components. Results presented show that the formed component geometry can be predicted with an average error of 225 μm and maximum error of 700 μm. In addition, a methodology is developed to achieve uniform thickness distribution with good accuracy in high wall angle components formed using multistage strategy. Hemispherical component is formed with 100 μm variation in thickness except at the component opening and maximum profile deviation of 350 μm. This thickness prediction capability helps the designer to choose intermediate stages and to form components with engineered thickness with reasonable accuracy.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Jeswiet, J. , Micari, F. , Hirt, G. , Bramley, A. , Duflou, J. , and Allwood, J. , 2005, “Asymmetric Single Point Incremental Forming of Sheet Metal,” CIRP Ann. Manuf. Technol., 54(2), pp. 88–114. [CrossRef]
Matsubara, S. , 2001, “A Computer Numerically Controlled Dieless Incremental Forming of a Sheet Metal,” Proc. Inst. Mech. Eng., Part B, 215(7), pp. 959–966. [CrossRef]
Reddy, N. V. , Lingam, R. , and Cao, J. , 2014, “Incremental Sheet Metal Forming Processes,” Handbook of Manufacturing Engineering and Technology, Springer, London, pp. 411–452.
Malhotra, R. , Cao, J. , Ren, F. , Kiridena, V. , Cedric Xia, Z. , and Reddy, N. , 2011, “Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools,” ASME J. Manuf. Sci. Eng., 133(6), p. 061019. [CrossRef]
Lingam, R. , Amit, S. , and Reddy, N. , 2016, “Deflection Compensations for Tool Path to Enhance Accuracy During Double-Sided Incremental Forming,” ASME J. Manuf. Sci. Eng., 138(9), p. 091008. [CrossRef]
Asghar, J. , Lingam, R. , Shibin, E. , and Reddy, N. V. , 2014, “Tool Path Design for Enhancement of Accuracy in Single-Point Incremental Forming,” Proc. Inst. Mech. Eng., Part B, 228(9), pp. 1027–1035. [CrossRef]
Lingam, R. , Prakash, O. , Belk, J. , and Reddy, N. , 2017, “Automatic Feature Recognition and Tool Path Strategies for Enhancing Accuracy in Double Sided Incremental Forming,” Int. J. Adv. Manuf. Technol., 88(5), pp. 1639–1655. [CrossRef]
Lingam, R. , Kishan, I. , Harikrishnan, C. , and Reddy, N. , 2015, “Importance of Feature Sequencing in Incremental Forming,” ASME Paper No. MSEC2015-9471.
Jeswiet, J. , Adams, D. , Doolan, M. , McAnulty, T. , and Gupta, P. , 2015, “Single Point and Asymmetric Incremental Forming,” Adv. Manuf., 3(4), pp. 253–262. [CrossRef]
Emmens, W. , Sebastiani, G. , and Van den Boogaard, A. , 2010, “The Technology of Incremental Sheet Forming-a Brief Review of the History,” J. Mater. Process. Technol., 210(8), pp. 981–997. [CrossRef]
Behera, A. K. , de Sousa, R. A. , Ingarao, G. , and Oleksik, V. , 2017, “Single Point Incremental Forming: An Assessment of the Progress and Technology Trends From 2005 to 2015,” J. Manuf. Processes, 27, pp. 37–62. [CrossRef]
Gatea, S. , Ou, H. , and McCartney, G. , 2016, “Review on the Influence of Process Parameters in Incremental Sheet Forming,” Int. J. Adv. Manuf. Technol., 87(1), pp. 479–499. [CrossRef]
Echrif, S. , and Hrairi, M. , 2011, “Research and Progress in Incremental Sheet Forming Processes,” Mater. Manuf. Processes, 26(11), pp. 1404–1414. [CrossRef]
Asgar, J. , Lingam, R. , and Reddy, V. , 2013, “Tool Path Influence on Electric Pulse Aided Deformation During Incremental Sheet Metal Forming,” AIP Proc., 1567, pp. 840–843.
Behera, A. K. , and Ou, H. , 2016, “Effect of Stress Relieving Heat Treatment on Surface Topography and Dimensional Accuracy of Incrementally Formed Grade 1 Titanium Sheet Parts,” Int. J. Adv. Manuf. Technol., 87(9), pp. 3233–3248. [CrossRef]
Jeswiet, J. , Duflou, J. R. , and Szekeres, A. , 2005, “Forces in Single Point and Two Point Incremental Forming,” Adv. Mater. Res., 6–8, pp. 449–456. [CrossRef]
Petek, A. , Kuzman, K. , and Kopač, J. , 2009, “Deformations and Forces Analysis of Single Point Incremental Sheet Metal Forming,” Mater. Sci. Eng., 35(2), pp. 107-116. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BSL8-0029-0015
Duflou, J. R. , Tunckol, Y. , and Aerens, R. , 2007, “Force Analysis for Single Point Incremental Forming,” Key Eng. Mater., 344, pp. 543–550. [CrossRef]
Henrard, C. , Bouffioux, C. , Eyckens, P. , Sol, H. , Duflou, J. , Van Houtte, P. , Van Bael, A. , Duchene, L. , and Habraken, A. , 2011, “Forming Forces in Single Point Incremental Forming: Prediction by Finite Element Simulations, Validation and Sensitivity,” Comput. Mechanics, 47(5), pp. 573–590. [CrossRef]
Aerens, R. , Eyckens, P. , Van Bael, A. , and Duflou, J. , 2010, “Force Prediction for Single Point Incremental Forming Deduced From Experimental and FEM Observations,” Int. J. Adv. Manuf. Technol., 46(9–12), pp. 969–982. [CrossRef]
Ambrogio, G. , Filice, L. , Gagliardi, F. , and Micari, F. , 2005, “Sheet Thinning Prediction in Single Point Incremental Forming,” Adv. Mater. Res., 6, pp. 479–486. [CrossRef]
Duflou, J. , Verbert, J. , Belkassem, B. , Gu, J. , Sol, H. , Henrard, C. , and Habraken, A. , 2008, “Process Window Enhancement for Single Point Incremental Forming Through Multi-Step Toolpaths,” CIRP Ann. Manuf. Technol., 57(1), pp. 253–256. [CrossRef]
Skjødt, M. , Bay, N. , Endelt, B. , and Ingarao, G. , 2008, “Multi Stage Strategies for Single Point Incremental Forming of a Cup,” Int. J. Mater. Forming, 1(Suppl. 1), pp. 1199–1202. [CrossRef]
Abhishek, K. , 2009, “Multi-Stage Tool Path Strategies for Single Point Incremental Forming,” M. Tech thesis, Indian Institute of Technology Kanpur, Kanpur, India.
Malhotra, R. , Bhattacharya, A. , Kumar, A. , Reddy, N. , and Cao, J. , 2011, “A New Methodology for Multi-Pass Single Point Incremental Forming With Mixed Toolpaths,” CIRP Ann. Manuf. Technol., 60(1), pp. 323–326. [CrossRef]
Lingam, R. , Bansal, A. , and Reddy, N. , 2016, “Analytical Prediction of Formed Geometry in Multi-Stage Single Point Incremental Forming,” Int. J. Mater. Forming, 9(3), pp. 395–404. [CrossRef]
Bhattacharya, A. , Maneesh, K. , Reddy, N. , and Cao, J. , 2011, “Formability and Surface Finish Studies in Single Point Incremental Forming,” ASME J. Manuf. Sci. Eng., 133(6), p. 061020. [CrossRef]
Mirnia, M. , Dariani, B. M. , Vanhove, H. , and Duflou, J. , 2014, “Thickness Improvement in Single Point Incremental Forming Deduced by Sequential Limit Analysis,” Int. J. Adv. Manuf. Technol., 70(9–12), pp. 2029–2041. [CrossRef]
Cao, T. , Lu, B. , Xu, D. , Zhang, H. , Chen, J. , Long, H. , and Cao, J. , 2015, “An Efficient Method for Thickness Prediction in Multi-Pass Incremental Sheet Forming,” Int. J. Adv. Manuf. Technol., 77(1–4), pp. 469–483. [CrossRef]
Behera, A. K. , Verbert, J. , Lauwers, B. , and Duflou, J. R. , 2013, “Tool Path Compensation Strategies for Single Point Incremental Sheet Forming Using Multivariate Adaptive Regression Splines,” Comput. Aided Des., 45(3), pp. 575–590. [CrossRef]
Behera, A. K. , Lauwers, B. , and Duflou, J. R. , 2014, “Tool Path Generation Framework for Accurate Manufacture of Complex 3d Sheet Metal Parts Using Single Point Incremental Forming,” Comput. Ind., 65(4), pp. 563–584. [CrossRef]
Behera, A. K. , Lauwers, B. , and Duflou, J. R. , 2012, “Advanced Feature Detection Algorithms for Incrementally Formed Sheet Metal Parts,” Trans. Nonferrous Met. Soc. China, 22(Suppl. 2), pp. s315–s322. [CrossRef]
Behera, A. K. , Gu, J. , Lauwers, B. , and Duflou, J. R. , 2012, “Influence of Material Properties on Accuracy Response Surfaces in Single Point Incremental Forming,” Key Eng. Mater., 504–506, pp. 919–924. [CrossRef]
Behera, A. K. , Lu, B. , and Ou, H. , 2016, “Characterization of Shape and Dimensional Accuracy of Incrementally Formed Titanium Sheet Parts With Intermediate Curvatures Between Two Feature Types,” Int. J. Adv. Manuf. Technol., 83(5–8), pp. 1099–1111. [CrossRef]
Behera, A. K. , Lauwers, B. , and Duflou, J. R. , 2015, “Tool Path Generation for Single Point Incremental Forming Using Intelligent Sequencing and Multi-Step Mesh Morphing Techniques,” Int. J. Mater. Forming, 8(4), pp. 517–532. [CrossRef]
Verbert, J. , Duflou, J. , and Lauwers, B. , 2007, “Feature Based Approach for Increasing the Accuracy of the SPIF Process,” Key Eng. Mater., 344, pp. 527–534. [CrossRef]
Behera, A. K. , Vanhove, H. , Lauwers, B. , and Duflou, J. R. , 2011, “Accuracy Improvement in Single Point Incremental Forming Through Systematic Study of Feature Interactions,” Key Eng. Mater., 473, pp. 881–888. [CrossRef]
Duchêne, L. , Guzmán, C. F. , Behera, A. K. , Duflou, J. R. , and Habraken, A. M. , 2013, “Numerical Simulation of a Pyramid Steel Sheet Formed by Single Point Incremental Forming Using Solid-Shell Finite Elements,” Key Eng. Mater., 549, pp. 180–188. [CrossRef]
De Sena, J. , Guzmán, C. , Duchêne, L. , Habraken, A. , Behera, A. , Duflou, J. , Valente, R. , and de Sousa, R. A. , 2016, “Simulation of a Two-Slope Pyramid Made by SPIF Using an Adaptive Remeshing Method With Solid-Shell Finite Element,” Int. J. Mater. Forming, 9(3), pp. 383–394. [CrossRef]
Bansal, A. , Lingam, R. , Yadav, S. K. , and Reddy, N. V. , 2017, “Prediction of Forming Forces in Single Point Incremental Forming,” J. Manuf. Processes, 28(3), pp. 486–493.
Silva, M. , Skjødt, M. , Martins, P. , and Bay, N. , 2008, “Revisiting the Fundamentals of Single Point Incremental Forming by Means of Membrane Analysis,” Int. J. Mach. Tools Manuf., 48(1), pp. 73–83. [CrossRef]
Timoshenko, S. , 1964, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York.
Mohammadi, A. , Vanhove, H. , Van Bael, A. , and Duflou, J. R. , 2016, “Towards Accuracy Improvement in Single Point Incremental Forming of Shallow Parts Formed Under Laser Assisted Conditions,” Int. J. Mater. Forming, 9(3), pp. 339–351. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

Prediction of RBD in multistage forming

Grahic Jump Location
Fig. 2

Forming sequences of conical geometry with inclined base and a hump on it: (a) component geometry, (b) features of the geometry, (c) RBD, (d) sequence F1−F2−F3, (e) sequence F1−F3−F2, (f) sequence F2−F1−F3, (g) sequence F2−F3−F1, (h) sequence F3−F1−F2, (i) sequence F3−F2−F1

Grahic Jump Location
Fig. 1

Flow chart representing the steps in geometry prediction

Grahic Jump Location
Fig. 9

Free-form component with multiple features formed with two different feature sequencing: (a) component geometry, (b) features in geometry, (c) predicted geometry F1−F2−F3, (d) predicted geometry F2−F1−F3, (e) formed component F1−F2−F3, (f) formed component F2−F1−F3, (g) profile comparison (F1−F2−F3), (h) profile comparison (F2−F1−F3), (i) error F1−F2−F3, (j) error F2−F1−F3 and (k) deviation between predicted profiles for both sequences

Grahic Jump Location
Fig. 10

Component with inclined hump formed in F1−F2−F3 and F3−F2−F1 sequences: (a) component geometry, (b) formed component (F1−F2−F3), (c) comparison of profiles along section A-A (F1−F2−F3), (d) comparison of profiles along section A-A (F3−F2−F1), (e) error between predicted and measured profiles along section A-A (F1−F2−F3), and (f) error between predicted and measured profiles along section A-A (F3−F2−F1)

Grahic Jump Location
Fig. 4

Schematic illustration of material movement for thickness calculation in MSPIF: (a) material movement and (b) effective wall angle and effective incremental depth

Grahic Jump Location
Fig. 5

Spring back prediction for different sequences: (a) sequence F1−F2−F3 and (b) sequence F3−F2−F1

Grahic Jump Location
Fig. 6

Applying tool deflection and sheet spring-back in geometry prediction

Grahic Jump Location
Fig. 7

Comparison of predicted and experimentally measured axial forces for component with free-form geometry: (a) free-form geometry and (b) comparison of axial forces

Grahic Jump Location
Fig. 8

Geometry prediction of single feature component formed using multistage forming—stage 1: cone 50 deg, stage 2: cone 60 deg (tool diameter 9.5 mm, incremental depth 0.3 mm): (a) stage 1 and (b) stage 2

Grahic Jump Location
Fig. 11

Uniform thickness distribution using multi-stage forming: (a) material movement during multistage forming, (b) profiles of iteration 1, (c) profiles of iteration 2, (d) profiles of iteration 3, (e) thickness of formed components, and (f) comparison of predicted and measured profiles and thickness of iteration 3

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In