Research Papers

Cellular Automaton Simulation of Microstructure Evolution for Friction Stir Blind Riveting

[+] Author and Article Information
Avik Samanta, Ninggang Shen

Department of Mechanical and
Industrial Engineering,
University of Iowa,
Iowa City, IA 52242

Haipeng Ji

Department of Mechanical and
Industrial Engineering,
University of Iowa,
Iowa City, IA 52242;
Research Institute for Energy
Equipment Materials,
Hebei University of Technology,
Tianjin 300130, China

Weiming Wang

Department of Mechanical Engineering,
University of Hawaii at Manoa,
Honolulu, HI 96822

Jingjing Li

The Harold and Inge Marcus Department
of Industrial and Manufacturing Engineering,
Penn State University,
State College, PA 16801

Hongtao Ding

Department of Mechanical and
Industrial Engineering,
University of Iowa,
Iowa City, IA 52242
e-mail: hongtao-ding@uiowa.edu

1Corresponding author.

Manuscript received October 9, 2017; final manuscript received November 17, 2017; published online January 3, 2018. Assoc. Editor: Wayne Cai.

J. Manuf. Sci. Eng 140(3), 031016 (Jan 03, 2018) (10 pages) Paper No: MANU-17-1625; doi: 10.1115/1.4038576 History: Received October 09, 2017; Revised November 17, 2017

Friction stir blind riveting (FSBR) process offers the ability to create highly efficient joints for lightweight metal alloys. During the process, a distinctive gradient microstructure can be generated for the work material near the rivet hole surface due to high-gradient plastic deformation and friction. In this work, discontinuous dynamic recrystallization (dDRX) is found to be the major recrystallization mechanism of aluminum alloy 6111 undergoing FSBR. A cellular automaton (CA) model is developed for the first time to simulate the evolution of microstructure of workpiece material during the dynamic FSBR process by incorporating main microstructure evolution mechanisms, including dislocation dynamics during severe plastic deformation, dynamic recovery, dDRX, and subsequent grain growth. Complex thermomechanical loading conditions during FSBR are obtained using a mesh-free Lagrangian particle-based smooth particle hydrodynamics (SPH) method, and are applied in the CA model to predict the microstructure evolution near the rivet hole. The simulation results in grain structure agree well with the experiments, which indicates that the important characteristics of microstructure evolution during the FSBR process are well captured by the CA model. This study presents a novel numerical approach to model and simulate microstructure evolution undergoing severe plastic deformation processes.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Wang, P.-C. , and Stevenson, R. , 2006, “Friction Stir Rivet Method of Joining,” Gm Global Technology Operations, Inc., Detroit, MI, U.S. Patent No. US7,862,271. https://www.google.co.in/patents/US7862271
Gao, D. , Ersoy, U. , Stevenson, R. , and Wang, P. , 2009, “A New One-Sided Joining Process for Aluminum Alloys: Friction Stir Blind Riveting,” ASME J. Manuf. Sci. Eng., 131(6), p. 061002. [CrossRef]
Min, J. , Li, J. , Li, Y. , Carlson, B. E. , Lin, J. , and Wang, W.-M. , 2015, “Friction Stir Blind Riveting for Aluminum Alloy Sheets,” J. Mater. Process. Technol., 215, pp. 20–29. [CrossRef]
Min, J. , Li, Y. , Carlson, B. E. , Hu, S. J. , Li, J. , and Lin, J. , 2015, “A New Single-Sided Blind Riveting Method for Joining Dissimilar Materials,” CIRP Ann.-Manuf. Technol., 64(1), pp. 13–16. [CrossRef]
Lathabai, S. , Tyagi, V. , Ritchie, D. , Kearney, T. , Finnin, B. , Christian, S. , Sansome, A. , and White, G. , 2011, “Friction Stir Blind Riveting: A Novel Joining Process for Automotive Light Alloys,” SAE Int. J. Mater. Manuf., 4(1), pp. 589–601. [CrossRef]
Min, J. , Li, J. , Carlson, B. E. , Li, Y. , Quinn, J. F. , Lin, J. , and Wang, W. , 2015, “Friction Stir Blind Riveting for Joining Dissimilar Cast Mg AM60 and Al Alloy Sheets,” ASME J. Manuf. Sci. Eng., 137(5), p. 51022. [CrossRef]
Wang, W.-M. , Ali Khan, H. , Li, J. , Miller, S. F. , and Trimble, A. Z. , 2017, “Classification of Failure Modes in Friction Stir Blind Riveted Lap-Shear Joints With Dissimilar Materials,” ASME J. Manuf. Sci. Eng., 139(2), p. 021005. [CrossRef]
Min, J. , Li, Y. , Li, J. , Carlson, B. E. , and Lin, J. , 2015, “Friction Stir Blind Riveting of Carbon Fiber-Reinforced Polymer Composite and Aluminum Alloy Sheets,” Int. J. Adv. Manuf. Technol., 76(5–8), pp. 1403–1410. [CrossRef]
Jata, K. V. , and S, S. L. , 2000, “Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys,” Scr. Mater., 43(8), pp. 743–749. [CrossRef]
McNelley, T. R. , Swaminathan, S. , and Su, J. Q. , 2008, “Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys,” Scr. Mater., 58(5), pp. 349–354. [CrossRef]
Liu, G. , Murr, L. E. , Niou, C.-S. , McClure, J. C. , and Vega, F. R. , 1997, “Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum,” Scr. Mater., 37(3), pp. 355–361. [CrossRef]
Murr, L. , Liu, G. , and McClure, J. , 1997, “Dynamic Recrystallization in Friction-Stir Welding of Aluminium Alloy 1100,” J. Mater. Sci. Lett., 16(22), pp. 1801–1803. [CrossRef]
Cao, X. , and Jahazi, M. , 2011, “Effect of Tool Rotational Speed and Probe Length on Lap Joint Quality of a Friction Stir Welded Magnesium Alloy,” Mater. Des., 32(1), pp. 1–11. [CrossRef]
Mironov, S. , Onuma, T. , Sato, Y. S. , and Kokawa, H. , 2015, “Microstructure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy,” Acta Mater., 100(18), pp. 301–312. [CrossRef]
Lienert, T. , and Stellwag , W., Jr. , 2003, “Friction Stir Welding Studies on Mild Steel,” Weld. J., 82(1), pp. 1–9. https://app.aws.org/wj/supplement/01-2003-LIENERT-s.pdf
Saeid, T. , Abdollah-Zadeh, A. , Shibayanagi, T. , Ikeuchi, K. , and Assadi, H. , 2010, “On the Formation of Grain Structure During Friction Stir Welding of Duplex Stainless Steel,” Mater. Sci. Eng. A, 527(24–25), pp. 6484–6488. [CrossRef]
Mohammadi, J. , Behnamian, Y. , Mostafaei, A. , Izadi, H. , Saeid, T. , Kokabi, A. H. , and Gerlich, A. P. , 2015, “Friction Stir Welding Joint of Dissimilar Materials Between AZ31B Magnesium and 6061 Aluminum Alloys: Microstructure Studies and Mechanical Characterizations,” Mater. Charact., 101, pp. 189–207. [CrossRef]
Chang, W. S. , Rajesh, S. R. , Chun, C. K. , and Kim, H. J. , 2011, “Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding Between AA6061-T6 Al Alloy and AZ31 Mg Alloy,” J. Mater. Sci. Technol., 27(3), pp. 199–204. [CrossRef]
Chen, Y. C. , and Nakata, K. , 2009, “Effect of Tool Geometry on Microstructure and Mechanical Properties of Friction Stir Lap Welded Magnesium Alloy and Steel,” Mater. Des., 30(9), pp. 3913–3919. [CrossRef]
Min, J. , Li, J. , Li, Y. , Carlson, B. E. , and Lin, J. , 2016, “Affected Zones in an Aluminum Alloy Frictionally Penetrated by a Blind Rivet,” ASME J. Manuf. Sci. Eng., 138(5), p. 054501. [CrossRef]
Rotella, G. , Dillon, O. W. , Umbrello, D. , Settineri, L. , and Jawahir, I. S. , 2013, “Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy,” J. Manuf. Process., 15(1), pp. 87–95. [CrossRef]
Tabei, A. , Shih, D. S. , Garmestani, H. , and Liang, S. Y. , 2016, “Dynamic Recrystallization of Al Alloy 7075 in Turning,” ASME J. Manuf. Sci. Eng., 138(7), p. 071010. [CrossRef]
Zheng, C. , Xiao, N. , Li, D. , and Li, Y. , 2008, “Microstructure Prediction of the Austenite Recrystallization During Multi-Pass Steel Strip Hot Rolling: A Cellular Automaton Modeling,” Comput. Mater. Sci., 44(2), pp. 507–514. [CrossRef]
Kugler, G. , and Turk, R. , 2004, “Modeling the Dynamic Recrystallization Under Multi-Stage Hot Deformation,” Acta Mater., 52(15), pp. 4659–4668. [CrossRef]
Ding, R. , and Guo, Z. X. , 2001, “Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization,” Acta Mater., 49(16), pp. 3163–3175. [CrossRef]
Yin, H. , and Felicelli, S. D. , 2009, “A Cellular Automaton Model for Dendrite Growth in Magnesium Alloy AZ91,” Modell. Simul. Mater. Sci. Eng., 17(7), p. 75011. [CrossRef]
Yazdipour, N. , Davies, C. H. J. , and Hodgson, P. D. , 2008, “Microstructural Modeling of Dynamic Recrystallization Using Irregular Cellular Automata,” Comput. Mater. Sci., 44(2), pp. 566–576. [CrossRef]
Jin, Z. , and Cui, Z. , 2010, “Investigation on Strain Dependence of Dynamic Recrystallization Behavior Using an Inverse Analysis Method,” Mater. Sci. Eng. A, 527(13–14), pp. 3111–3119. [CrossRef]
Jin, Z. , and Cui, Z. , 2012, “Investigation on Dynamic Recrystallization Using a Modified Cellular Automaton,” Comput. Mater. Sci., 63, pp. 249–255. [CrossRef]
Chen, F. , Cui, Z. , Liu, J. , Zhang, X. , and Chen, W. , 2009, “Modeling and Simulation on Dynamic Recrystallization of 30Cr2Ni4MoV Rotor Steel Using the Cellular Automaton Method,” Modell. Simul. Mater. Sci. Eng., 17(7), p. 075015. [CrossRef]
Chen, F. , Cui, Z. , Liu, J. , Chen, W. , and Chen, S. , 2010, “Mesoscale Simulation of the High-Temperature Austenitizing and Dynamic Recrystallization by Coupling a Cellular Automaton With a Topology Deformation Technique,” Mater. Sci. Eng. A, 527(21–22), pp. 5539–5549. [CrossRef]
Chen, F. , and Cui, Z. , 2012, “Mesoscale Simulation of Microstructure Evolution During Multi-Stage Hot Forging Processes,” Model. Simul. Mater. Sci. Eng., 20(4), p. 45008. [CrossRef]
Chen, F. , Qi, K. , Cui, Z. , and Lai, X. , 2014, “Modeling the Dynamic Recrystallization in Austenitic Stainless Steel Using Cellular Automaton Method,” Comput. Mater. Sci., 83, pp. 331–340. [CrossRef]
Hallberg, H. , Wallin, M. , and Ristinmaa, M. , 2010, “Simulation of Discontinuous Dynamic Recrystallization in Pure Cu Using a Probabilistic Cellular Automaton,” Comput. Mater. Sci., 49(1), pp. 25–34. [CrossRef]
Goetz, R. , 2005, “Particle Stimulated Nucleation During Dynamic Recrystallization Using a Cellular Automata Model,” Scr. Mater., 52(9), pp. 851–856. [CrossRef]
Qian, M. , and Guo, Z. X. , 2004, “Cellular Automata Simulation of Microstructural Evolution During Dynamic Recrystallization of an HY-100 Steel,” Mater. Sci. Eng. A, 365(1–2), pp. 180–185. [CrossRef]
Xiao, N. , Zheng, C. , Li, D. , and Li, Y. , 2008, “A Simulation of Dynamic Recrystallization by Coupling a Cellular Automaton Method With a Topology Deformation Technique,” Comput. Mater. Sci., 41(3), pp. 366–374. [CrossRef]
Ding, H. , Liu, L. , Kamado, S. , Ding, W. , and Kojima, Y. , 2009, “Investigation of the Hot Compression Behavior of the Mg–9Al–1Zn Alloy Using EBSP Analysis and a Cellular Automata Simulation,” Model. Simul. Mater. Sci. Eng., 17(2), p. 25009. [CrossRef]
Liu, X. , Li, L. , He, F. , Zhou, J. , Zhu, B. , and Zhang, L. , 2013, “Simulation on Dynamic Recrystallization Behavior of AZ31 Magnesium Alloy Using Cellular Automaton Method Coupling Laasraoui–Jonas Model,” Trans. Nonferrous Met. Soc. China, 23(9), pp. 2692–2699. [CrossRef]
Wu, C. , Yang, H. , and Li, H. , 2013, “Modeling of Static Coarsening of Two-Phase Titanium Alloy in the α + β Two-Phase Region at Different Temperature by a Cellular Automata Method,” Chin. Sci. Bull., 58(24), pp. 3023–3032. [CrossRef]
Zhang, Y. , Jiang, S. , Liang, Y. , and Hu, L. , 2013, “Simulation of Dynamic Recrystallization of NiTi Shape Memory Alloy During Hot Compression Deformation Based on Cellular Automaton,” Comput. Mater. Sci., 71, pp. 124–134. [CrossRef]
Pan, W. , Li, D. , Tartakovsky, A. M. , Ahzi, S. , Khraisheh, M. , and Khaleel, M. , 2013, “A New Smoothed Particle Hydrodynamics Non-Newtonian Model for Friction Stir Welding: Process Modeling and Simulation of Microstructure Evolution in a Magnesium Alloy,” Int. J. Plast., 48, pp. 189–204. [CrossRef]
Arora, A. , Zhang, Z. , De, A. , and DebRoy, T. , 2009, “Strains and Strain Rates During Friction Stir Welding,” Scr. Mater., 61(9), pp. 863–866. [CrossRef]
Schmidt, H. B. , and Hattel, J. H. , 2008, “Thermal Modelling of Friction Stir Welding,” Scr. Mater., 58(5), pp. 332–337. [CrossRef]
Nandan, R. , DebRoy, T. , and Bhadeshia, H. K. D. H. , 2008, “Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties,” Prog. Mater. Sci., 53(6), pp. 980–1023. [CrossRef]
Nandan, R. , Roy, G. G. , Lienert, T. J. , and Debroy, T. , 2007, “Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel,” Acta Mater., 55(3), pp. 883–895. [CrossRef]
Shen, N. , Samanta, A. , Ding, H. , and Cai, W. W. , 2016, “Simulating Microstructure Evolution of Battery Tabs During Ultrasonic Welding,” SME J. Manuf. Process., 23, pp. 306–314. [CrossRef]
Behnagh, R. A. , Shen, N. , Ansari, M. A. , Narvan, M. , Besharati Givi, M. K. , and Ding, H. , 2015, “Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips,” ASME J. Manuf. Sci. Eng., 138(4), p. 041008. [CrossRef]
Shen, N. , Samanta, A. , and Ding, H. , 2017, “Microstructure Simulations for Orthogonal Cutting Via a Cellular Automaton Model,” Procedia CIRP, 58, pp. 543–548. [CrossRef]
Sellars, C. M. , and Whiteman, J. A. , 1979, “Recrystallization and Grain Growth in Hot Rolling,” Met. Sci., 13(3–4), pp. 187–194. [CrossRef]
Gourdet, S. , and Montheillet, F. , 2003, “A Model of Continuous Dynamic Recrystallization,” Acta Mater., 51(9), pp. 2685–2699. [CrossRef]
Bacca, M. , Hayhurst, D. R. , and McMeeking, R. M. , 2015, “Continuous Dynamic Recrystallization During Severe Plastic Deformation,” Mech. Mater., 90, pp. 148–156. [CrossRef]
Sakai, T. , Belyakov, A. , Kaibyshev, R. , Miura, H. , and Jonas, J. J. , 2014, “Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions,” Prog. Mater. Sci., 60(1), pp. 130–207. [CrossRef]
Su, J.-Q. , Nelson, T. W. , and Sterling, C. J. , 2005, “Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys,” Mater. Sci. Eng. A, 405(1–2), pp. 277–286. [CrossRef]
Rhodes, C. G. , Mahoney, M. W. , Bingel, W. H. , and Calabrese, M. , 2003, “Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum,” Scr. Mater., 48(10), pp. 1451–1455. [CrossRef]
Li, D. , Zhang, D. , Liu, S. , Shan, Z. , Zhang, X. , Wang, Q. , and Han, S. , 2016, “Dynamic Recrystallization Behavior of 7085 Aluminum Alloy During Hot Deformation,” Trans. Nonferrous Met. Soc. China, 26(6), pp. 1491–1497. [CrossRef]
Feng, X. , Liu, H. , and Suresh Babu, S. , 2011, “Effect of Grain Size Refinement and Precipitation Reactions on Strengthening in Friction Stir Processed Al-Cu Alloys,” Scr. Mater., 65(12), pp. 1057–1060. [CrossRef]
Rokni, M. R. , Zarei-Hanzaki, A. , Roostaei, A. A. , and Abedi, H. R. , 2011, “An Investigation Into the Hot Deformation Characteristics of 7075 Aluminum Alloy,” Mater. Des., 32(4), pp. 2339–2344. [CrossRef]
Kassner, M. E. , and Barrabes, S. R. , 2005, “New Developments in Geometric Dynamic Recrystallization,” Mater. Sci. Eng. A, 410–411, pp. 152–155. [CrossRef]
Humphreys, F. J. , and Hatherly, M. , 2004, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK.
Villumsen, M. F. , and Fauerholdt, T. G. , 2008, “Simulation of Metal Cutting Using Smooth Particle Hydrodynamics,” LS-DYNA Anwenderforum, Bamberg, Germany, Sept. 30–Oct. 1, pp. 17–36. https://www.dynamore.de/de/download/papers/forum08/dokumente/C-III-02.pdf
Tartakovsky, A. , Grant, G. , Sun, X. , and Khaleel, M. , 2006, “Modeling of Friction Stir Welding (FSW) Process With Smooth Particle Hydrodynamics (SPH),” SAE Paper No. 2006-01-1394.
Patil, S. , 2014, “Modeling and Characterization of Spot Weld Material Configurations for Vehicle Crash Analysis,” Ph.D. thesis, Wichita State University, Wichita, KS. https://soar.wichita.edu/bitstream/handle/10057/11107/d14027.pdf?sequence=1
Agarwal, S. , Briant, C. L. , Hector, L. G. , and Chen, Y. L. , 2007, “Friction Stir Processed AA5182-O and AA6111-T4 Aluminum Alloys. Part 1: Electron Backscattered Diffraction Analysis,” J. Mater. Eng. Perform., 16(4), pp. 391–403. [CrossRef]
Özel, T. , and Zeren, E. , 2005, “Finite Element Method Simulation of Machining of AISI 1045 Steel With a Round Edge Cutting Tool,” Eighth CIRP International Workshop on Modeling of Machining Operations, Chemnitz, Germany, May 10–11, pp. 533 –542. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
Wang, W. , Wang, K. , Khan, H. A. , Li, J. , and Miller, S. , 2018, “Numerical Analysis of Magnesium to Aluminum Joints in Friction Stir Blind Riveting,” Seventh CIRP Conference on Assembly Technologies and Systems, Tianjin, China, May 10–12.
Hordon, M. , and Averbach, B. , 1961, “X-Ray Measurements of Dislocation Density in Deformed Copper and Aluminum Single Crystals,” Acta Metall., 9(3), pp. 237–246. [CrossRef]
Williamson, G. K. , and Smallman, R. E. , 1955, “III. Dislocation Densities in Some Annealed and Cold-Worked Metals From Measurements on the X-Ray Debye-Scherrer Spectrum,” Philos. Mag., 1(1), pp. 34–46. [CrossRef]
Peczak, P. , 1995, “A Monte Carlo Study of Influence of Deformation Temperature on Dynamic Recrystallization,” Acta Metall. Mater., 43(3), pp. 1279–1291. [CrossRef]
Mecking, H. , and Kocks, U. F. , 1981, “Kinetics of Flow and Strain-Hardening,” Acta Metall., 29(11), pp. 1865–1875. [CrossRef]
Kocks, U. F. , 1976, “Laws for Work-Hardening and Low-Temperature Creep,” ASME J. Eng. Mater. Technol., 98(1), pp. 76–85. [CrossRef]
Estrin, Y. , 1996, “Dislocation-Density-Related Constitutive Modeling,” Unified Constitutive Laws of Plastic Deformation, A. S. Krausz and K. Krausz , eds., Academic Press, San Diego, CA, pp. 69–106. [CrossRef]
Roberts, W. , and Ahlblom, B. , 1978, “A Nucleation Criterion for Dynamic Recrystallization During Hot Working,” Acta Metall., 26(5), pp. 801–813. [CrossRef]
Takeuchi, S. , and Argon, A. S. , 1976, “Steady-State Creep of Single-Phase Crystalline Matter at High Temperature,” J. Mater. Sci., 11(8), pp. 1542–1566. [CrossRef]
Derby, B. , 1991, “The Dependence of Grain Size on Stress During Dynamic Recrystallisation,” Acta Metall. Mater., 39(5), pp. 955–962. [CrossRef]
Stüwe, H. P. , and Ortner, B. , 1974, “Recrystallization in Hot Working and Creep,” Met. Sci., 8(1), pp. 161–167. [CrossRef]
McLean, D. , 1957, Grain Boundaries in Metals, Oxford University Press, Oxford, UK.
Peczak, P. , and Luton, M. J. , 1993, “A Monte Carlo Study of the Influence of Dynamic Recovery on Dynamic Recrystallization,” Acta Metall. Mater., 41(1), pp. 59–71. [CrossRef]
Read, W. T. , and Shockley, W. , 1950, “Dislocation Models of Crystal Grain Boundaries,” Phys. Rev., 78(3), pp. 275–289. [CrossRef]
Ding, H. , Shen, N. , and Shin, Y. C. , 2011, “Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting,” Comput. Mater. Sci., 50(10), pp. 3016–3025. [CrossRef]
Frost, H. J. , and Ashby, F. , 1982, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Kidlington, UK.
Woo, W. , Balogh, L. , Ungár, T. , Choo, H. , and Feng, Z. , 2008, “Grain Structure and Dislocation Density Measurements in a Friction-Stir Welded Aluminum Alloy Using X-Ray Peak Profile Analysis,” Mater. Sci. Eng. A, 498(1–2), pp. 308–313. [CrossRef]
Woo, W. , Ungár, T. , Feng, Z. , Kenik, E. , and Clausen, B. , 2010, “X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy,” Metall. Mater. Trans. A, 41(5), pp. 1210–1216. [CrossRef]


Grahic Jump Location
Fig. 1

An illustration of the FSBR microstructure analysis area: (a) top view and (b) cross section view

Grahic Jump Location
Fig. 2

Microstructure of the work material after FSBR: (a) overall grain structure indicating different evolution zones, (b) grain structure in zone II, and (c) grain structure in zone I near the rivet hole

Grahic Jump Location
Fig. 3

Simulated temperature distribution around the friction stir penetrated hole surface

Grahic Jump Location
Fig. 4

Flowchart for CA model

Grahic Jump Location
Fig. 5

Comparison of the initial microstructure of AA6111-T4 prior to FSBR process: (a) EBSD micrograph, (b) EBSD crystal orientation maps [20], and (c) simulated initial microstructure

Grahic Jump Location
Fig. 6

Simulated contour plot of dislocation density at different stage of the process: (a) before DRX nucleation, (b) onset of DRX nucleation, (c) end of frictional penetration, and (d) end of simulation

Grahic Jump Location
Fig. 7

Spatial evolution of mean dislocation density

Grahic Jump Location
Fig. 8

The recrystallization progress histories of (a) the simulated temperature history of hole surface and (b) volume fraction of the recrystallized domain

Grahic Jump Location
Fig. 9

Evolution of microstructure during CA simulation: (a) DRX nucleation near the right side boundary, (b) DRX nucleation spread toward left boundary, (c) final simulated grain structure, and (d) experimental grain structure (experimental images adapted from Ref. [20]

Grahic Jump Location
Fig. 10

Simulated grain size comparison




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In