Research Papers

Analysis of the Relative Velocity and Its Influence on the Process Results in Unguided Vibratory Finishing

[+] Author and Article Information
Maximilian Lachenmaier

Lehrstuhl für Technologie
der Fertigungsverfahren,
Werkzeugmaschinenlabor WZL der RWTH
Aachen University,
Campus-Boulevard 30,
Aachen 52074, Germany
e-mail: m.lachenmaier@wzl.rwth-aachen.de

Richard Brocker

Saint-Gobain Sekurit Deutschland GmbH
Glasstraße 1,
Herzogenrath 52134, Germany
e-mail: richard.brocker@saint-gobain.com

Daniel Trauth

Lehrstuhl für Technologie
der Fertigungsverfahren,
Werkzeugmaschinenlabor WZL der RWTH
Aachen University,
Campus-Boulevard 30,
Aachen 52074, Germany
e-mail: d.trauth@wzl.rwth-aachen.de

Fritz Klocke

Lehrstuhl für Technologie
der Fertigungsverfahren,
Werkzeugmaschinenlabor WZL der RWTH
Aachen University,
Campus-Boulevard 30,
Aachen 52074, Germany
e-mail: f.klocke@wzl.rwth-aachen.de

1Corresponding author.

Manuscript received June 27, 2017; final manuscript received November 15, 2017; published online January 3, 2018. Assoc. Editor: Y. B. Guo.

J. Manuf. Sci. Eng 140(3), 031012 (Jan 03, 2018) (9 pages) Paper No: MANU-17-1396; doi: 10.1115/1.4038571 History: Received June 27, 2017; Revised November 15, 2017

The relative velocity between workpiece and media has a strong effect on the material removal rate in vibratory finishing. Due to this fact, a measurement system in the form of a camera-integrated workpiece is presented in this paper, which is capable of measuring the relative velocity between the workpiece and the media in an unguided vibratory finishing process. The unique feature of this measurement system is the completely wireless construction, so that the results are not influenced by wires for the data transfers and the electrical power supply of the light-emitting diodes of the camera system. Furthermore, the influence of the media size and adjustments of the imbalance engine like rotational speed, mass distribution between the upper and the lower imbalance weights, and offset angle between the imbalance weights were investigated. The evaluation of the results has shown that the media size and the rotational speed of the imbalance engine are the major influence factors on the relative velocity between workpiece and media.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Holtermann, R. , Schumann, S. , Menzel, A. , and Biermann, D. , 2013, “Modelling, Simulation and Experimental Investigation of Chip Formation in Internal Traverse Grinding,” Prod. Eng., 7(2–3), pp. 251–263. [CrossRef]
Klocke, F. , and König, W. , 2008, “Manufacturing Processes 2,” Grinding, Honing, Lapping, Springer-Verlag, Berlin. [CrossRef]
Li, K.-M. , Hu, Y.-M. , Yang, Z.-Y. , and Chen, M.-Y. , 2012, “Experimental Study on Vibration-Assisted Grinding,” ASME J. Manuf. Sci. Eng., 134(4), p. 041009. [CrossRef]
Preston, F. , 1927, “The Theory and Design of Plate Glass Polishing Machines,” J. Soc. Glass Technol., 11, pp. 214–256.
Lin, S.-C. , and Wu, M.-L. , 2002, “A Study of the Effects of Polishing Parameters on Material Removal Rate and Non-Uniformity,” Int. J. Mach. Tools Manuf., 42(1), pp. 99–103. [CrossRef]
Domblesky, J. , Evans, R. , and Cariapa, V. , 2004, “Material Removal Model for Vibratory Finishing,” Int. J. Prod. Res., 42(5), pp. 1029–1041. [CrossRef]
Barletta, M. , Pietrobono, F. , Rubino, G. , and Tagliaferri, V. , 2014, “Drag Finishing of Sensitive Workpieces With Fluidized Abrasives,” J. Manuf. Processes, 16(4), pp. 494–502. [CrossRef]
Brocker, R. , and Klocke, F. , 2011, “ Das Fertigungsverfahren Gleitschleifen. Potentiale in der Oberflächenbearbeitung,” wt Werkstattstechnik online, 6, pp. 385−389.
Wang, S. , Timsit, R. S. , and Spelt, J. K. , 2000, “Experimental Investigation of Vibratory Finishing of Aluminum,” Wear, 243(1–2), pp. 147–156. [CrossRef]
Yabuki, A. , Baghbanan, M. R. , and Spelt, J. K. , 2002, “Contact Forces and Mechanisms in a Vibratory Finisher,” Wear, 252(7–8), pp. 635–643. [CrossRef]
Domblesky, J. , Cariapa, V. , and Evans, R. , 2003, “Investigation of Vibratory Bowl Finishing,” Int. J. Prod. Res., 41(16), pp. 3943–3953. [CrossRef]
Ciampini, D. , Papini, M. , and Spelt, J. K. , 2007, “Impact Velocity Measurement of Media in Vibratory Finisher,” J. Mater. Process. Technol., 18(3), pp. 347–357. [CrossRef]
Uhlmann, E. , Eulitz, A. , and Dethlefs, A. , 2015, “Discrete Element Modelling of Drag Finishing,” Proc. CIRP., 31, pp. 369–374. [CrossRef]
Uhlmann, E. , Dethlefs, A. , and Eulitz, A. , 2014, “Investigation of Material Removal and Surface Topography Formation in Vibratory Finishing,” Proc. CIRP, 14, pp. 25–30. [CrossRef]
Hashimoto, F. , and Johnson, S. P. , 2012, “Modeling of Vibratory Finishing Machines,” CIRP Ann., 64(1), pp. 345–348. [CrossRef]
Klocke, F. , Dambon, O. , and Zunke, R. , 2008, “Modeling of Contact Behavior Between Polishing Pad and Workpiece Surface,” Prod. Eng., 2(1), pp. 9–14. [CrossRef]
Mullany, B. , Shahinian, H. , Navare, J. , Azimi, F. , Fleischhauer, E. , Tkacik, P. , and Keanini, R. , 2017, “The Application of Computational Fluid Dynamics to Vibratory Finishing Processes,” CIRP Ann., 66(1), pp. 309–312. [CrossRef]
Prüller, H. , 2012, Praxiswissen Gleitschleifen. Leitfaden für die Produktionsplanung und Prozessoptimierung, Vieweg + Teubner Verlag, Wiesbaden, Germany. [CrossRef]


Grahic Jump Location
Fig. 1

Overview of the test parameters

Grahic Jump Location
Fig. 2

Used grinding media types

Grahic Jump Location
Fig. 3

Camera-integrated workpiece

Grahic Jump Location
Fig. 4

Example of single frames showing the trajectories of the grinding media at different times

Grahic Jump Location
Fig. 5

Curve of the relative velocity and the number of tracked media

Grahic Jump Location
Fig. 6

Overview of different types of grinding media contact

Grahic Jump Location
Fig. 7

Average contact area for plastic and ceramic grinding media in percentage

Grahic Jump Location
Fig. 8

Velocity elements of unguided vibratory finishing

Grahic Jump Location
Fig. 9

Example of the path of one grinding media piece on the workpiece's surface

Grahic Jump Location
Fig. 10

Media motion within the work bowl (a) and relative velocity graph (b)

Grahic Jump Location
Fig. 11

Main effects plots for the influence of various process input parameters on the average relative velocity vrel,m

Grahic Jump Location
Fig. 12

Comparison of the average relative velocity vrel,m for two different combinations of process input parameters

Grahic Jump Location
Fig. 13

Process results depending on the rotational speed of the imbalance engine and the size of the plastic media



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In