Research Papers

Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting

[+] Author and Article Information
Daniel Mejia

Laboratory of CAD CAM CAE,
Universidad EAFIT,
Cra 49 no 7-sur-50,
Medellín 050022, Colombia
e-mail: dmejiap@eafit.edu.co

Aitor Moreno

Paseo Mikeletegi 57,
Donostia/San Sebastián 20009, Spain
e-mail: amoreno@vicomtech.org

Ander Arbelaiz

Paseo Mikeletegi 57,
Donostia/San Sebastián 20009, Spain
e-mail: aarbelaiz@vicomtech.org

Jorge Posada

Paseo Mikeletegi 57,
Donostia/San Sebastián 20009, Spain
e-mail: jposada@vicomtech.org

Oscar Ruiz-Salguero

Laboratory of CAD CAM CAE,
Universidad EAFIT,
Cra 49 no 7-sur-50,
Medellín 050022, Colombia
e-mail: oruiz@eafit.edu.co

Raúl Chopitea

Lantek Investigación y Desarroll,
Parque Tecnológico de Álava,
Ferdinand Zeppelin 2,
Miñano (Araba/Álava) 01510, Spain
e-mail: r.chopitea@lantek.es

1Corresponding author.

Manuscript received May 12, 2017; final manuscript received October 5, 2017; published online December 21, 2017. Assoc. Editor: Y. B. Guo.

J. Manuf. Sci. Eng 140(3), 031006 (Dec 21, 2017) (9 pages) Paper No: MANU-17-1318; doi: 10.1115/1.4038207 History: Received May 12, 2017; Revised October 05, 2017

In the context of computer numeric control (CNC)-based sheet metal laser cutting, the problem of heat transfer simulation is relevant for the optimization of CNC programs. Current physically based simulation tools use numeric or analytic algorithms which provide accurate but slow solutions due to the underlying mathematical description of the model. This paper presents: (1) an analytic solution to the laser heating problem of rectangular sheet metal for curved laser trajectories and convective cooling, (2) a graphics processing unit (GPU) implementation of the analytic solution for fast simulation of the problem, and (3) an integration within an interactive environment for the simulation of sheet metal CNC laser cutting. This analytic approach sacrifices the material removal effect of the laser cut in the favor of an approximated real-time temperature map on the sheet metal. The articulation of thermal, geometric, and graphic feedback in virtual manufacturing environments enables interactive redefinition of the CNC programs for better product quality, lower safety risks, material waste, and energy usage among others. The error with respect to finite element analysis (FEA) in temperature prediction descends as low as 3.5%.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Steen, W. M. , and Mazumder, J. , 2010, Laser Cutting, Drilling and Piercing, Springer, London, pp. 131–198.
Spence, A. D. , and Li, Z. , 2001, “ Parallel Processing for 2-1/2D Machining Simulation,” Sixth ACM Symposium on Solid Modeling and Applications (SMA), Ann Arbor, MI, June 4–8, pp. 140–148. https://dl.acm.org/citation.cfm?doid=376957.376974
Moreno, A. , Segura, Á. , Arregui, H. , Posada, J. , Ruíz de Infante, Á. , and Canto, N. , 2014, Using 2D Contours to Model Metal Sheets in Industrial Machining Processes, Springer, London, pp. 135–149.
Dewil, R. , Vansteenwegen, P. , and Cattrysse, D. , 2016, “ A Review of Cutting Path Algorithms for Laser Cutters,” Int. J. Adv. Manuf. Technol., 87(5–8), pp. 1865–1884. [CrossRef]
Posada, J. , Toro, C. , Barandiaran, I. , Oyarzun, D. , Stricker, D. , de Amicis, R. , Pinto, E. B. , Eisert, P. , Döllner, J. , and Vallarino, I. , 2015, “ Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet,” IEEE Comput. Graphics Appl., 35(2), pp. 26–40. [CrossRef]
Modest, M. , and Abakians, H. , 1986, “ Evaporative Cutting of a Semi-Infinite Body With a Moving CW Laser,” ASME J. Heat Transfer, 108(3), pp. 602–607. [CrossRef]
Zimmer, K. , 2009, “ Analytical Solution of the Laser-Induced Temperature Distribution Across Internal Material Interfaces,” Int. J. Heat Mass Transfer, 52(1–2), pp. 497–503. [CrossRef]
Jiang, H.-J. , and Dai, H.-L. , 2015, “ Effect of Laser Processing on Three Dimensional Thermodynamic Analysis for HSLA Rectangular Steel Plates,” Int. J. Heat Mass Transfer, 82, pp. 98–108. [CrossRef]
Winczek, J. , 2010, “ Analytical Solution to Transient Temperature Field in a Half-Infinite Body Caused by Moving Volumetric Heat Source,” Int. J. Heat Mass Transfer, 53(25–26), pp. 5774–5781. [CrossRef]
Parandoush, P. , and Hossain, A. , 2014, “ A Review of Modeling and Simulation of Laser Beam Machining,” Int. J. Mach. Tool. Manuf., 85, pp. 135–145. [CrossRef]
Yilbas, B. , Akhtar, S. , and Keles, O. , 2014, “ Laser Cutting of Triangular Blanks From Thick Aluminum Foam Plate: Thermal Stress Analysis and Morphology,” Appl. Therm. Eng., 62(1), pp. 28–36. [CrossRef]
Akhtar, S. , Kardas, O. , Keles, O. , and Yilbas, B. , 2014, “ Laser Cutting of Rectangular Geometry Into Aluminum Alloy: Effect of Cut Sizes on Thermal Stress Field,” Opt. Laser Eng., 61, pp. 57–66. [CrossRef]
Yilbas, B. , Akhtar, S. , and Karatas, C. , 2014, “ Laser Cutting of Rectangular Geometry Into Alumina Tiles,” Opt. Laser Eng., 55, pp. 35–43. [CrossRef]
Akhtar, S. , 2014, “ Laser Cutting of Thick-Section Circular Blanks: Thermal Stress Prediction and Microstructural Analysis,” Int. J. Adv. Manuf. Technol., 71(5), pp. 1345–1358. [CrossRef]
Roberts, I. , Wang, C. , Esterlein, R. , Stanford, M. , and Mynors, D. , 2009, “ A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing,” Int. J. Mach. Tool. Manuf., 49(12–13), pp. 916–923. [CrossRef]
Shi, B. , and Attia, H. , 2013, “ Integrated Process of Laser-Assisted Machining and Laser Surface Heat Treatment,” ASME J. Manuf. Sci. Eng., 135(6), p. 061021. [CrossRef]
Akarapu, R. , Li, B. , and Segall, A. , 2004, “ A Thermal Stress and Failure Model for Laser Cutting and Forming Operations,” J. Failure Anal. Prev., 4(5), pp. 51–62. [CrossRef]
Nyon, K. , Nyeoh, C. , Mokhtar, M. , and Abdul-Rahman, R. , 2012, “ Finite Element Analysis of Laser Inert Gas Cutting on Inconel 718,” Int. J. Adv. Manuf. Tech., 60(9–12), pp. 995–1007. [CrossRef]
Fu, C. , Sealy, M. , Guo, Y. , and Wei, X. , 2015, “ Finite Element Simulation and Experimental Validation of Pulsed Laser Cutting of Nitinol,” J. Manuf. Process., 19, pp. 81–86. [CrossRef]
Yilbas, B. , Akhtar, S. , and Keles, O. , 2013, “ Laser Cutting of Aluminum Foam: Experimental and Model Studies,” ASME J. Manuf. Sci. Eng., 135(5), p. 051018. [CrossRef]
Modest, M. , 1996, “ Three-Dimensional, Transient Model for Laser Machining of Ablating/Decomposing Materials,” Int. J. Heat Mass Transfer, 39(2), pp. 221–234. [CrossRef]
Modest, M. , 1997, “ Laser Through-Cutting and Drilling Models for Ablating/Decomposing Materials,” J. Laser Appl., 9(3), pp. 137–145. [CrossRef]
Han, G. , and Na, S. , 1999, “ A Study on Torch Path Planning in Laser Cutting Processes Part 1: Calculation of Heat Flow in Contour Laser Beam Cutting,” J. Manuf. Syst., 18(2), pp. 54–61. [CrossRef]
Xu, W. , Fang, J. , Wang, X. , Wang, T. , Liu, F. , and Zhao, Z. , 2005, “ A Numerical Simulation of Temperature Field in Plasma-Arc Forming of Sheet Metal,” J. Mater. Process. Technol., 164–165, pp. 1644–1649. [CrossRef]
Kim, M. , 2000, “ Transient Evaporative Laser-Cutting With Boundary Element Method,” Appl. Math. Model., 25(1), pp. 25–39. [CrossRef]
Kim, M. , 2004, “ Transient Evaporative Laser Cutting With Moving Laser by Boundary Element Method,” Appl. Math. Model., 28(10), pp. 891–910. [CrossRef]
Kheloufi, K. , Hachemi, A. , and Benzaoui, A. , 2015, “ Numerical Simulation of Transient Three-Dimensional Temperature and Kerf Formation in Laser Fusion Cutting,” ASME J. Heat Transfer, 137(11), p. 112101. [CrossRef]
Yuan, P. , and Gu, D. , 2015, “ Molten pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10 Mg Nanocomposites: Simulation and Experiments,” J. Phys. D. Appl. Phys., 48(3), p. 035303. [CrossRef]
Gross, M. S. , 2006, “ On Gas Dynamic Effects in the Modelling of Laser Cutting Processes,” Appl. Math. Model., 30(4), pp. 307–318. [CrossRef]
Boffy, H. , Baietto, M. , Sainsot, P. , and Lubrecht, A. , 2012, “ Detailed Modelling of a Moving Heat Source Using Multigrid Methods,” Tribol. Int., 46(1), pp. 279–287. [CrossRef]
Gupta, N. , and Nataraj, N. , 2013, “ A Posteriori Error Estimates for an Optimal Control Problem of Laser Surface Hardening of Steel,” Adv. Comput. Math., 39(1), pp. 69–99. [CrossRef]
Bailey, N. , Tan, W. , and Shin, Y. , 2015, “ A Parametric Study on Laser Welding of Magnesium Alloy AZ31 by a Fiber Laser,” ASME J. Manuf. Sci. Eng., 137(4), p. 041003. [CrossRef]
Mejia, D. , Moreno, A. , Ruiz-Salguero, O. , and Barandiaran, I. , 2017, “ Appraisal of Open Software for Finite Element Simulation of 2D Metal Sheet Laser Cut,” Int. J. Interactive Des. Manuf., 11(3), pp. 547–558. https://link.springer.com/article/10.1007/s12008-016-0308-5
Kim, H. , Lee, S. , and Yang, D. , 2009, “ Toolpath Planning Algorithm for the Ablation Process Using Energy Sources,” Comput. Aided Des., 41(1), pp. 59–64. [CrossRef]
Han, G.-C. , and Na, S.-J. , 1999, “ A Study on Torch Path Planning in Laser Cutting Processes Part 2: Cutting Path Optimization Using Simulated Annealing,” J. Manuf. Syst., 18(2), pp. 62–70. [CrossRef]
Kim, Y. , Gotoh, K. , and Toyosada, M. , 2004, “ Global Cutting-Path Optimization Considering the Minimum Heat Effect With Microgenetic Algorithms,” J. Mar. Sci. Technol., 9(2), pp. 70–79. [CrossRef]
Velez, G. , Moreno, A. , Infante, A. R. D. , and Chopitea, R. , 2016, “ Real-Time Part Detection in a Virtually Machined Sheet Metal Defined as a Set of Disjoint Regions,” Int. J. Comput. Integr. Manuf., 29(10), pp. 1089–1104. [CrossRef]
Pietro, P. D. , and Yao, Y. , 1995, “ A Numerical Investigation Into Cutting Front Mobility in CO2 Laser Cutting,” Int. J. Mach. Tool. Manu., 35(5), pp. 673–688. [CrossRef]
Yilbas, B. , and Akhtar, S. , 2014, “ Laser Bending of Metal Sheet and Thermal Stress Analysis,” Opt. Laser Technol., 61, pp. 34–44. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of the laser heating model. A laser passes an amount of energy f at a sheet location x0, while the sheet cools down due to convection q at the surface.

Grahic Jump Location
Fig. 2

Integration scheme between the physics and geometry modules for interactive simulation of the CNC sheet metal laser cutting

Grahic Jump Location
Fig. 3

Analytic temperature and relative error distribution (with respect to FEA) for the S-shape laser trajectory: (a) analytic temperature distribution at t = 0.12 s and (b) relative error. Analytic versus FEA solution. Relative error below 3.43%.

Grahic Jump Location
Fig. 4

Simulation of the CNC process integrating the physical (512 × 512 Fourier coefficients) and the geometric modules (1024 × 1024 grid points): (a) temperature texture map and (b) visualization of the cutting process in the interactive simulator

Grahic Jump Location
Fig. 5

Central processing unit (CPU) computation times of the Fourier coefficients for a single timestep (as per Eq. (5))

Grahic Jump Location
Fig. 6

The interactive CNC simulator can be used to detect potential problems in the nesting planning due to heat propagation: (a) nesting of the CNC program, (b) overall 3D visualization of the CNC simulation, and (c) detailed inspection near a recent cut. Heat affects posterior cuts




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In