0
Research Papers

Diamond Wheel Dressing: A Comprehensive Review

[+] Author and Article Information
Wenfeng Ding

College of Mechanical and
Electrical Engineering,
Nanjing University of
Aeronautics and Astronuatics,
Nanjing 210016, China
e-mail: dingwf2000@vip.163.com

Haonan Li

School of Mechanical
Engineering and Automation,
Northeastern University,
Shenyang 110819, China
e-mail: lhnlwfb@163.com

Liangchi Zhang

Laboratory for Precision and
Nano Processing Technologies,
School of Mechanical and
Manufacturing Engineering,
The University of New South Wales,
NSW 2052, Australia
e-mail: liangchi.zhang@unsw.edu.au

Jiuhua Xu, Yucan Fu, Honghua Su

College of Mechanical and
Electrical Engineering,
Nanjing University of
Aeronautics and Astronuatics,
Nanjing 210016, China

1Corresponding authors.

Manuscript received March 28, 2017; final manuscript received September 14, 2017; published online November 2, 2017. Assoc. Editor: Kai Cheng.

J. Manuf. Sci. Eng 139(12), 121006 (Nov 02, 2017) (25 pages) Paper No: MANU-17-1177; doi: 10.1115/1.4037991 History: Received March 28, 2017; Revised September 14, 2017

This paper provides a comprehensive review on the dressing techniques of diamond grinding wheels. The common techniques with different tools were discussed in detail, which included the bonded SiC and diamond abrasive tools, loose abrasives, soft-elastic abrasive belts, and profiled diamond wheels. Meanwhile, laser dressing, electrical discharge dressing (EDD), and electrolytic in-process dressing (ELID) were also addressed. Some critical problems in the above dressing techniques were then analyzed and summarized for further investigation.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Heinzel, C. , Borchers, F. , Berger, D. , and Ehle, L. , 2016, “ Surface and Material Modifications of Tempered Steel After Precision Grinding With Electroplated Coarse Grained Diamond Wheels,” Procedia CIRP, 45, pp. 191–194. [CrossRef]
Daito, M. , Kanai, A. , and Miyashita, M. , 1998, “ Traverse Grinding Characteristics of Resin Bond Diamond Wheel With New Profile in Precision Grinding of Silicon Wafers,” Spring Topical Meeting of the ASPE on Silicon Machining, Carmel-by-the-Sea, CA, Apr. 13–16, pp. 40–43.
Grunwald, F. , and Baswetter, G. , 1979, “ Precision Treatment of Optical Glass With Small-Grained Diamond Grinding Wheels ,” Eighth Congress of the International Confederation of Measuring Technique, Moscow, Russia, May 21–27, pp. 219–222.
Baek, S. Y. , Lee, J. H. , Lee, E. S. , and Lee, J. T. , 2008, “ Machinability in Precision Grinding of Aspheric Optical Lens With Diamond Wheel,” Key Eng. Mater., 364–366, pp. 1162–1167. [CrossRef]
Matsuo, T. , Touge, M. , and Yamada, H. , 1997, “ High-Precision Surface Grinding of Ceramics With Superfine Grain Diamond Cup Wheels,” CIRP Ann., 46(1), pp. 249–252.
Suzuki, H. , Okada, M. , Yamagata, Y. , Morita, S. , and Higuchi, T. , 2012, “ Precision Grinding of Structured Ceramic Molds by Diamond Wheel Trued With Alloy Metal,” CIRP Ann. Manuf. Technol., 61(1), pp. 283–286. [CrossRef]
Xie, J. , Xie, H. F. , Luo, M. J. , Tan, T. W. , and Li, P. , 2012, “ Dry Electro-Contact Discharge Mutual-Wear Truing of Micro Diamond Wheel V-Tip for Precision Micro-Grinding,” Int. J. Mach. Tools Manuf., 60, pp. 44–51. [CrossRef]
Zhang, B. , Uematsu, T. , and Nakajima, A. , 1998, “ High Efficiency and Precision Grinding of Si3N4 Ceramic Balls Aided by Magnetic Fluid Support Using Diamond Wheels,” JSME Int. J. Ser. C, 41(3), pp. 499–505. [CrossRef]
Zhao, Q. L. , and Guo, B. , 2015, “ Ultra-Precision Grinding of Optical Glasses Using Mono-Layer Nickel Electroplated Coarse-Grained Diamond Wheels—Part 1: ELID Assisted Precision Conditioning of Grinding Wheels,” Precis. Eng., 39, pp. 56–66. [CrossRef]
Zhang, G. F. , Zhang, B. , Deng, Z. H. , and Tan, Y. Q. , 2010, “ An Experimental Study on a Noval Diamond Whisker Wheel,” CIRP Ann. Manuf. Technol., 59(1), pp. 355–360. [CrossRef]
Verkerk, J. , 1979, “ Slotted Wheels to Avoid Cracks in Precision Grinding,” Annual Abrasive Engineering Society Conference/Exhibition, Pittsburge, PA, May 14–16, pp. 75–81.
Tawakoli, T. , Lee, D. H. , and Daneshi, A. , 2013, “ Green Grinding With Innovative Wheel Topography,” Int. J. Precis. Eng. Manuf., 14(7), pp. 1209–1212. [CrossRef]
Nakayama, K. , Takagi, J. , and Abe, T. , 1977, “ Grinding Wheel With Helical Grooves-An Attempt to Improve the Grinding Performance,” Manufacturing Technology, 27th General Assembly CIRP, Delhi, India, Sept. 29–Oct. 3, pp. 133–138.
Kohler, J. , Achindler, A. , and Woiwode, S. , 2012, “ Continuous Generating Grinding-Tooth Root Machining and Use of CBN-Tools,” CIRP Ann. Manuf. Technol., 61(1), pp. 291–294. [CrossRef]
Akbari, M. , Buhl, S. , Leinenbach, C. , and Wegener, K. , 2016, “ A New Value for Johnson Cook Damage Limit Criterion in Machining With Large Negative Rake Angle as Basis for Understanding of Grinding,” J. Mater. Process. Technol., 234, pp. 58–71. [CrossRef]
Puerto, P. , Kirsch, B. , Madariagn, J. , Fernandez, R. , Aurich, J. C. , and Gallego, I. , 2015, “ A Comparison of Techniques to Measure the Wear Flat Area of Conventional and Superabrasive Grinding Wheels,” ASME J. Tribol., 137(2), p. 024503. [CrossRef]
Ismail, M. F. , Yanagi, K. , and Isobe, H. , 2011, “ Characterization of Geometrical Properties of Electroplated Diamond Tools and Estimation of Its Grinding Performance,” Wear, 271(3–4), pp. 559–564. [CrossRef]
Huang, H. , 2001, “ Effects of Truing/Dressing Intensity on Truing/Dressing Efficiency and Grinding Performance of Vitrified Diamond Wheels,” J. Mater. Process. Technol., 117(1–2), pp. 9–14. [CrossRef]
Inasaki, I. , 1989, “ Dressing of Resinoid Bonded Diamond Grinding Wheels,” CIRP Ann. Manuf. Technol., 38(1), pp. 315–318. [CrossRef]
Malkin, S. , 1989, Grinding Technology: Theory and Applications of Machining With Abrasives, Society of Manufacturing Engineers, Dearborn, MI, pp. 79–106.
Rowe, W. B. , 2009, Principles of Modern Grinding Technology, William Andrew Publishing, Norwich, NY, pp. 59–78. [CrossRef]
Tsai, M. Y. , and Liao, Y. S. , 2009, “ Dressing Characteristics of Oriented Single Diamond on CMP Polyurethane Pad,” Mach. Sci. Technol., 13(1), pp. 92–105. [CrossRef]
Timmer, J. H. , 2001, “ Laser konditionieren von CBN-und Diamant-Schleifschei-ben,” Ph.D. dissertation, Braunschweig University of Technology, Braunschweig, Germany.
Mohamed, A. O. , Bauer, R. , and Warkentin, A. , 2013, “ Application of Shallow Circumferential Grooved Wheels to Creep-Feed Grinding,” J. Mater. Process. Technol., 213(5), pp. 700–706. [CrossRef]
Aurich, J. C. , Braun, O. , and Warnecke, G. , 2003, “ Development of Superabrasive Grinding Wheel With Defined Grain Structure Using Kinematic Simulation,” Ann. CIRP Manuf. Technol., 52(1), pp. 275–280. [CrossRef]
Aurich, J. C. , Herzenstiel, P. , Sudermann, H. , and Magg, T. , 2008, “ High-Performance Dry Grinding Using a Grinding Wheel With a Defined Grain Pattern,” Ann. CIRP Manuf. Technol., 57(1), pp. 357–362. [CrossRef]
Oliveira, J. F. G. , Bottene, A. C. , and France, T. V. , 2010, “ A Novel Dressing Technique for Texturing of Ground Surfaces,” CIRP Ann. Manuf. Technol., 59(1), pp. 361–364. [CrossRef]
Deng, H. , Deng, Z. H. , and Li, S. C. , 2017, “The Grinding Performance of a Laser-Dressed Bronze-Bonded Diamond Grinding Wheel,” Int. J. Adv. Manuf. Technol., 88(5–8), pp. 1789–1798.
Walter, C. , Komischke, T. , Kuster, F. , and Wegener, K. , 2014, “ Laser-Structured Grinding Tools-Generation of Protype Patterns and Performance Evaluation,” J. Mater. Process. Technol., 214(4), pp. 951–961. [CrossRef]
Rahman, M. , Kumar, A. S. , and Biswas, I. , 2009, “ A Review of Electrolytic in-Process Dressing (ELID) Grinding,” Key Eng. Mater., 404, pp. 45–59. [CrossRef]
Schopf, M. , Beltrami, I. , Boccadoro, M. , and Kramer, D. , 2001, “ ECDM (Electro Chemical Discharge Machining), a New Method for Trueing and Dressing of Metal Bonded Diamond Grinding Tools,” CIRP Ann. Manuf. Technol., 50(1), pp. 125–128. [CrossRef]
Wegener, K. , Hoffmeister, H. W. , Karpuschewski, B. , Kuster, F. , Hahmann, W. C. , and Rabiey, M. , 2011, “ Conditioning and Monitoring of Grinding Wheels,” CIRP Ann. Manuf. Technol., 60(2), pp. 757–777. [CrossRef]
Zhang, C. , and Shin, Y. C. , 2002, “ A Novel Laser-Assisted Truing and Dressing Technique for Vitrified CBN Wheels,” Int. J. Mach. Tools Manuf., 42(7), pp. 825–835. [CrossRef]
Lavine, A. S. , Malkin, S. , and Jen, T. C. , 1989, “ Thermal Aspects of Grinding With cBN Wheels,” CIRP Ann. Manuf. Technol., 38(1), pp. 557–560. [CrossRef]
Chen, X. , Rowe, W. B. , and Cai, R. , 2002, “ Precision Grinding Using CBN Wheels,” Int. J. Mach. Tools Manuf., 42(5), pp. 585–593. [CrossRef]
Inasaki, I. , 1987, “ Creep Feed Grinding With Continuous Dressing,” CIRP Ann. Manuf. Technol., 36(1), pp. 227–230. [CrossRef]
Takagi, J. , and Liu, M. , 1996, “ Fracture Characteristics of Grain Cutting Edges of CBN Wheel in Truing Operation,” J. Mater. Process. Technol., 62(4), pp. 397–402. [CrossRef]
Chen, B. , Guo, B. , and Zhao, Q. L. , 2015, “ On-Machine Precision Form Truing of Arc-Shaped Diamond Wheels,” J. Mater. Process. Technol., 223, pp. 65–74. [CrossRef]
Derkx, J. M. , Hoogstrate, A. M. , Saurwalt, J. J. , and Karpuschewski, B. , 2008, “ Form Crush Dressing of Diamond Grinding Wheels,” CIRP Ann. Manuf. Technol., 57(1), pp. 349–352. [CrossRef]
Filho, N. M. , Coelho, R. T. , and Oliveira, J. F. G. , 1999, “ Analysis of Dressing Performance Using Single Crystal Diamond Dresser,” Ind. Diamond Rev., 59(581), pp. 133–142.
Subramanian, K. , and Lindsay, R. P. A. , 1992, “ A Systems Approach for the Use of Vitrified Bonded Superabrasive Wheels for Precision Production Grinding,” ASME J. Eng. Ind., 114(1), pp. 41–52.
Syoji, K. , 1989, “ Truing and Dressing of Superabrasive Wheels,” Mach. Tools, 2, pp. 18–26.
Zhou, Y. , Atwood, M. , Golini, D. , Smith, M. , and Paul, D. , 1998, “ Wear and Self-Sharpening of Vitrified Bond Diamond Wheels During Sapphire Grinding,” Wear, 219(1), pp. 42–45. [CrossRef]
Shih, A. J. , 1998, “ Rotary Truing of Vitreous Bond Diamond Grinding Wheels Using Metal Bond Diamond Disks,” Mach. Sci. Technol., 2(1), pp. 13–18. [CrossRef]
Syoji, K. , and Piao, C. G. , 1991, “ Studies on Truing of Diamond Vitrified Wheels—II: Truing Mechanism With Cup-Truer,” Int. J. Jpn. Soc. Precis. Eng., 25(4), pp. 285–290.
Williams, J. , and Yazdzik, H. , 1993, “ In-Process Dressing Characteristics of Vitrified Bonded CBN Grinding Wheels,” ASME J. Eng. Gas Turbines Power, 115(1), pp. 200–204. [CrossRef]
Brinksmeier, E. , and Cinar, M. , 1995, “ Characterization of Dressing Processes by Determination of the Collision Number of the Abrasive Grits,” CIRP Ann. Manuf. Technol., 44(1), pp. 299–304. [CrossRef]
Klocke, F. , and Konig, W. , 1995, “ Appropriate Conditioning Strategies Increase the Performance Capabilities of Vitrified-Bond CBN Grinding Wheels,” CIRP Ann. Manuf. Technol., 44(1), pp. 305–310. [CrossRef]
Prusak, Z. , Webster, J. A. , and Marinescu, D. , 1997, “ Influence of Dressing Parameters on Grinding Performance of CBN/Seed Gel Hybrid Wheels in Cylindrical Grinding,” Int. J. Prod. Res., 35(10), pp. 2899–2915. [CrossRef]
Blunt, L. , and Ebdon, S. , 1996, “ Application of Three-Dimensional Surface Measurement Techniques to Characterizing Grinding Wheel Topography,” Int. J. Mach. Tools Manuf., 36(11), pp. 1207–1226. [CrossRef]
Bohlheim, W. , 1997, “ Method for Determining Grinding Wheel Topography,” Ind. Diamond Rev., 57(573), pp. 58–62.
Syoji, K. , Zhou, L. B. , and Matsui, S. , 1990, “ Studies on Truing and Dressing of Diamond Wheels—The Measurement of Protrusion Height of Abrasive Grains by Using a Stereopair and Influence of Protrusion Height on Grinding Performance,” Bull. JSPE, 24(2), pp. 124–129.
Chen, X. , Rowe, W. B. , Allanson, D. R. , and Mills, B. A. , 1999, “ Grinding Power Model for Selection of Dressing and Grinding Conditions,” ASME J. Manuf. Sci. Eng., 121(4), pp. 632–637. [CrossRef]
Hassui, A. E. , Diniz, J. F. G. , and Felipe, J. J. F. , 1998, “ Experimental Evaluation on Grinding Wheel Wear Through Vibration and Acoustic Emission,” Wear, 217(1), pp. 7–14. [CrossRef]
Kato, Y. , 1990, “ Optimum Dressing of Vitrified Bond CBN Wheels and Its Effect on the Residual Stress of the Workpiece ,” Fourth International Grinding Conference, Dearborn, MI, Oct. 9–11, pp. 228–234.
Maksoud, T. M. A. , Mokbel, A. A. , and Morgan, J. E. , 1997, “ In-Process Detection of Grinding Wheel Truing and Dressing Conditions Using a Flapper Nozzle Arrangement,” J. Eng. Manuf., 211(5), pp. 335–343. [CrossRef]
Torrance, A. A. , and Badger, J. A. , 2000, “ The Relation Between the Traverse Dressing of Vitrified Grinding Wheels and Their Performance,” Int. J. Mach. Tools Manuf., 40(12), pp. 1787–1811. [CrossRef]
Mochida, M. , Kubo, A. , Tamaki, J. , Harano, K. , Sumiya, H. , and Ullah, A. M. M. S. , 2012, “ Performance of Newly Developed Single-Point Diamond Dresser in Terms of Cutting-Point Rake Angle,” Adv. Mater. Res., 565, pp. 205–210. [CrossRef]
Zhang, K. , Su, H. H. , and Dai, F. M. , 2014, “ Study on the Dullness of Monolayer Brazed Diamond Grinding Wheel Through Plate Wheel Dressing,” Adv. Mater. Res., 1027, pp. 159–162. [CrossRef]
Tawakoli, T. , and Daneshi, A. , 2012, “ T-Dress, a Novel Approach in Dressing and Structuring of Grinding Wheels,” Adv. Mater. Res., 565, pp. 217–221. [CrossRef]
Chowdhury, M. A. K. , Kubo, A. , Tamaki, J. , and Sharifullah, A. M. M. , 2013, “ Computer-Aided Simulation of Rotary Diamond Dressing Based on Kinematic Analysis,” J. Adv. Mech. Des., Syst., Manuf., 7(4), pp. 506–520. [CrossRef]
Kubo, A. , and Tamaki, J. , 2007, “ Development of Solid-Type Diamond Rotary Dresser Utilizing CVD Diamond Disc Application to Low-Spped Dresser,” Key Eng. Mater., 329, pp. 187–194. [CrossRef]
Shih, A. J. , 2000, “ An Experimental Investigation of Rotary Diamond Truing and Dressing of Vitreous Bond Wheels for Ceramic Grinding,” Int. J. Mach. Tools Manuf., 40(12), pp. 1755–1774. [CrossRef]
Chang, X. L. , Wu, H. Y. , and Peng, Y. F. , 2014, “ Research on the 2-Axis Cup-Wheel Dressing Technology of Arc-Diamond Grinding Wheel,” 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Harbin, China, Apr. 26–29, p. 92811X.
Su, H. H. , Fu, Y. C. , Xu, J. H. , Ding, W. F. , and Xu, H. J. , 2010, “ Dressing of Monolayer Brazed Diamond Wheel for Grinding Li-Ti Ferrite,” Adv. Mater. Res., 126-128, pp. 995–1000. [CrossRef]
Hessel, D. , 2003, “ Punktcrushieren Karamisch Gebundener Diamanschleifscheiben,” Ph.D. Dissertation, University of Hannover, Hannover, Germany.
Chen, W. K. , Huang, H. , and Yin, L. , 2005, “ Loose Abrasive Truing and Dressing of Resin Bond Diamond Cup Wheels for Grinding Fibre Optic Connectors,” J. Mater. Process. Technol., 159(2), pp. 229–239. [CrossRef]
Yao, P. , Wei, W. , Huang, C. Z. , Wang, J. , Zhu, H. T. , and Zhang, Z. Y. , 2014, “ High Efficiency Abrasive Waterjet Dressing of Diamond Grinding Wheel,” Adv. Mater. Res., 1017, pp. 243–248. [CrossRef]
Ma, M. X. , Ying, B. G. , and Wang, X. K. , 2000, “ Soft-Elastic Dressing of Fine Grain Diamond Wheels,” J. Mater. Process. Technol., 103(2), pp. 194–199. [CrossRef]
Su, H. H. , Dai, J. B. , Ding, W. F. , Zhang, K. , and Xu, W. , 2016, “ Experimental Research on Performance of Monolayer Brazed Diamond Wheel Through a New Precise Dressing Method-Plate Wheel Dressing,” Int. J. Adv. Manuf. Technol., 87(9–12), pp. 3249–3259. [CrossRef]
Chen, Y. Q. , and Zhang, L. C. , 2013, Polishing of Diamond Materials: Mechanisms, Modeling and Implementation, Springer, London, pp. 11–20. [CrossRef]
Su, H. H. , Xu, J. H. , Fu, Y. C. , Ding, W. F. , and Wang, S. , 2010, “ Experimental Study on Performance of Monolayer Brazed Diamond Wheel Through Plate Wheel Dressing,” Adv. Mater. Res., 325, pp. 208–212. [CrossRef]
Riemer, O. , and Mutlugünes, Y. , 2012, “ Thermo-Chemical Dressing of Coarse Grained Diamond Grinding Wheels,” Adv. Mater. Res., 565, pp. 211–216. [CrossRef]
Lv, B. H. , Wu, Z. , Yuan, J. L. , and Fan, H. W. , 2011, “ Dressing Process of Porous Self-Generation Superabrasive Tool,” Adv. Mater. Res., 325, pp. 183–188. [CrossRef]
Brinksmeier, E. , Aurich, J. C. , Govekar, E. , Heinzel, C. , Hoffmeister, H. W. , Klocke, F. , Peters, J. , Rentsch, R. , Stephenson, D. J. , Uhlmann, E. , Weinert, K. , and Wittmann, M. , 2006, “ Advances in Modeling and Simulation of Grinding Process,” CIRP Ann. Manuf. Technol., 55(2), pp. 667–696. [CrossRef]
Butler, D. L. , Blunt, L. A. , See, B. K. , Webster, J. A. , and Stout, K. J. , 2002, “ The Characterisation of Grinding Wheels Using 3D Surface Measurement Techniques,” J. Mater. Process. Technol., 127(2), pp. 234–237. [CrossRef]
Zhou, X. , and Xi, F. , 2002, “ Modeling and Predicting Surface Roughness of the Grinding Process,” Int. J. Mach. Tools Manuf., 42(8), pp. 969–977. [CrossRef]
Mahmoud, T. , Tamaki, J. , and Yan, J. , 2003, “ Three-Dimensional Shape Modeling of Diamond Abrasive Grains Measured by a Scanning Laser Microscope,” Key Eng. Mater., 238–239, pp. 131–136. [CrossRef]
Huo, F. W. , Jin, Z. J. , Kang, R. K. , Guo, D. M. , and Yang, C. , 2008, “ Recognition of Diamond Grains on Surface of Fine Diamond Grinding Wheel,” Front. Mech. Eng. China, 3(3), pp. 325–331. [CrossRef]
Hecker, R. L. , Ramoneda, I. M. , and Liang, S. Y. , 2003, “ Analysis of Wheel Topography and Grit Force for Grinding Process Modeling,” J. Manuf. Processes, 5(1), pp. 13–23. [CrossRef]
Herzenstiel, P. , and Aurich, J. C. , 2010, “ CBN-Grinding Wheel With a Defined Grain Pattern-Extensive Numerical and Experimental Studies,” Mach. Sci. Technol., 14(3), pp. 301–322. [CrossRef]
Kubo, A. , Sharif Ullah, A. M. M. , and Tamaki, J. , 2014, “ Computer-Aided Simulation of Dressing Using Diamond Rotary Dresser and Visualization of Dressing Process,” Adv. Mater. Res., 1017, pp. 592–597. [CrossRef]
Martins, C. H. R. , Aguiar, P. R. , Frech, A. , and Bianchi, E. C. , 2014, “ Tool Condition Monitoring of Single-Point Dresser Using Acoustic Emission and Neural Networks Models,” IEEE Trans. Instrum. Meas., 63(3), pp. 667–679. [CrossRef]
Lefebvre, A. , Sinot, O. , and Torrance, A. , 2013, “ Optimization of Dressing Conditions for a Resin-Bonded Diamond Wheel by Topography Analysis,” Mach. Sci. Technol., 17(2), pp. 312–324. [CrossRef]
Westkaemper, E. , 1995, “ Grinding Assisted by Nd:YAG Lasers,” CIRP Ann. Manuf. Technol., 44(1), pp. 317–320. [CrossRef]
Bathe, R. , Singh, A. K. , and Padmanabham, G. , 2014, “ Effect of Pulsed Laser Dressing of Metal-Bonded Diamond Wheel on Cutting Cutting Performance,” Mater. Manuf. Processes, 29(3), pp. 386–389. [CrossRef]
Deng, H. , Chen, G. Y. , Zhou, C. , Zhou, X. C. , He, J. , and Zhang, Y. , 2014, “ A Theoretical and Experimental Study on the Pulsed Laser Dressing of Bronze-Bonded Diamond Grinding Wheels,” Appl. Surf. Sci., 314, pp. 78–89. [CrossRef]
Nakajima, T. , Ohashi, K. , Sun, L. X. , and Jitsumori, K. , 1993, “ Dressing of Resinoid Bond Wheel With Moving Heat Source (1st)—Transformation of Wheel Surface With a Single Pulse Irradiation of YAG Laser,” J. JSPE, 59(12), pp. 1967–1972.
Nakajima, T. , Ohashi, K. , Sun, L. X. , Jitsumori, K. , and Yagi, D. , 1995, “ Dressing of Resinoid Bond Wheel With Moving Heat Source (2nd)—Dressing Effect With YAG Laser,” J. JSPE, 61(4), pp. 556–560.
Nakajima, T. , Ohashi, T. , and Yagi, D. , 1997, “ Dressing of Resinoid Bond Wheel With Moving Heat Source (3rd)—Improvement of Dressing Effect With Q-Switch YAG Laser,” J. JSPE, 63(8), pp. 1153–1157.
Tamaki, J. , Futamata, M. , and Iyama, T. , 1997, “ Laser Beam Aided Truing of Electroplated Diamond Grinding Quill,” J. JSPE, 63(12), pp. 1730–1734.
Xie, X. Z. , Chen, G. Y. , and Li, L. J. , 2004, “ Dressing of Resin-Bonded Superabrasive Grinding Wheels by Means of Acousto-Optical Q-Switched Pulsed Nd:YAG Laser,” Opt. Laser Technol., 36(5), pp. 409–419. [CrossRef]
Babu, N. R. , and Radhakrishnan, V. , 1989, “ Investigations on Laser Dressing of Grinding Wheels—Part II: grinding Performance of a Laser Dressed Aluminum Oxide Wheel,” ASME J. Eng. Ind., 111(3), pp. 253–261. [CrossRef]
Chen, G. Y. , Mei, L. F. , Zhang, B. , Yu, C. R. , and Shun, K. J. , 2010, “ Experiment and Numerical Simulation Study on Laser Truing and Dressing of Bronze-Bonded Diamond Wheel,” Opt. Lasers Eng., 48(3), pp. 295–304. [CrossRef]
Dold, C. , Transchel, R. , Rabiey, M. , Langenstein, P. , Jaeger, C. , Pude, F. , Kuster, F. , and Wegener, K. , 2011, “ A Study on Laser Touch Dressing of Electroplated Diamond Wheels Using Pulsed Picosecond Laser Sources,” CIRP Ann. Manuf. Technol., 60(1), pp. 363–366. [CrossRef]
Deng, H. , Chen, G. Y. , Zhou, C. , Li, S. C. , and Zhang, M. J. , 2014, “ Processing Parameter Optimization for the Laser Dressing of Bronze-Bonded Diamond Wheels,” Appl. Surf. Sci., 290, pp. 475–481. [CrossRef]
Hosokawa, A. , Ueda, T. , and Yunoki, T. , 2006, “ Laser Dressing of Metal Bonded Diamond Wheel,” CIRP Ann. Manuf. Technol., 55(1), pp. 329–332. [CrossRef]
Witzendorff, P. , Stompe, M. , Moalem, A. , Cvetkovic, S. , Suttmann, O. , Overmeyer, L. , and Rissing, L. , 2014, “ Dicing of Hard and Brittle Materials With on-Machine Laser-Dressed Metal-Bonded Diamond Blades,” Precis. Eng., 38(1), pp. 162–167. [CrossRef]
Wang, X. Y. , Wu, Y. B. , Wang, J. , Xu, W. J. , and Kato, M. , 2005, “ Absorbed Energy in Laser Truing of a Small Vitrified CBN Grinding Wheel,” J. Mater. Process. Technol., 164–165, pp. 1128–1133. [CrossRef]
Kang, R. L. , Yuan, J. T. , Zhang, Y. P. , and Ren, J. X. , 2001, “ Truing of Diamond Wheels by Laser,” Key Eng. Mater., 202–203, pp. 137–142. [CrossRef]
Yung, K. C. , Chen, G. Y. , and Li, L. J. , 2003, “ The Laser Dressing of Resin-Bonded CBN Wheels by a Q-Switched Nd:YAG Laser,” Int. J. Adv. Manuf. Technol., 22(7–8), pp. 541–546. [CrossRef]
Kunieda, Y. , Matsuura, H. , Kodama, S. , Yoshihara, N. , Yan, J. , and Kuriyagawa, T. , 2007, “ Development of a New Laser Conditioning Method for Ultra-Fine Grit Diamond Wheels,” Key Eng. Mater., 329, pp. 175–180. [CrossRef]
Wang, X. J. , Wang, R. K. , Xu, W. J. , Wang, L. J. , and Guo, D. M. , 2007, “ Modeling of Laser Dressing for Metal-Bond Diamond Grinding Wheel,” Key Eng. Mater., 329, pp. 145–150. [CrossRef]
Cai, S. , Chen, G. Y. , Zhou, C. , and Deng, H. , 2015, “ The Mechanism and Application of Bronze-Bond Diamond Grinding Wheel Pulsed Laser Dressing Based on Phase Explosion,” Int. J. Adv. Manuf. Technol., 80(9–12), pp. 1641–1653.
Chen, G. Y. , Deng, H. , Zhou, X. C. , Zhou, C. , He, J. , and Cai, S. , 2015, “ Online Tangential Laser Profiling of Coarse-Grained Bronze-Bonded Diamond Wheels,” Int. J. Adv. Manuf. Technol., 79(9–12), pp. 1477–1482. [CrossRef]
Walter, C. , Rabiey, M. , Warhanek, M. , Jochum, N. , and Wegener, K. , 2012, “ Dressing and Truing of Hybrid Bonded CBN Grinding Tools Using a Short-Pulsed Fibre Laser,” CIRP Ann. Manuf. Technol., 61(1), pp. 279–282. [CrossRef]
Guo, B. , Zhao, Q. L. , and Fang, X. Y. , 2014, “ Precision Grinding of Optical Glass With Laser Micro-Structured Coarse-Grained Diamond Wheels,” J. Mater. Process. Technol., 214(5), pp. 1045–1051. [CrossRef]
Guo, B. , Zhao, Q. L. , and Yu, X. , 2014, “ Surface Micro-Structuring of Coarse-Grained Diamond Wheels by Nanosecond Pulsed Laser for Improving Grinding Performance,” Int. J. Precis. Eng. Manuf., 15(10), pp. 2025–2030. [CrossRef]
Warhanek, M. , Walter, C. , Huber, S. , Hanni, F. , and Wegener, K. , 2015, “ Cutting Characteristics of Electroplated Diamond Tools With Laser-Generated Positive Clearance,” CIRP Ann. Manuf. Technol., 64(1), pp. 317–320. [CrossRef]
Transchel, R. , Heini, F. , Stirnimann, J. , Kuster, F. , Leinenbach, C. , and Wegener, K. , 2013, “ Influence of the Clearance Angle on the Cutting Efficiency of Blunt, Octahedral-Shaped Diamonds in an Active Filler Alloy,” Int. J. Mach. Tools Manuf., 75, pp. 9–15. [CrossRef]
Transchel, R. , Leinenbach, C. , and Wegener, K. , 2014, “ Cutting and Ploughing Forces for Small Clearance Angles of Hexa-Octahedron Shaped Diamond Grains,” CIRP Ann. Manuf. Technol., 63(1), pp. 325–328. [CrossRef]
Suzuki, K. , Uematsu, T. , and Nakagawa, T. , 1987, “ On-Machine Truing/Dressing of Metal Bond Diamond Grinding Wheels by Electro-Discharge Machining,” CIRP Ann. Manuf. Technol., 36(1), pp. 115–118. [CrossRef]
Qian, J. , Li, W. , and Ohmori, H. , 2000, “ Precision Internal Grinding With a Metal Bonded Diamond Grinding Wheel,” J. Mater. Process. Technol., 105(1–2), pp. 80–86. [CrossRef]
Sanchez, J. A. , Ortega, N. , Lopez de Lacalle, L. N. , Lamikiz, A. , and Maranon, J. A. , 2006, “ Analysis of the Electro Discharge Dressing (EDD) Process of Large Grit Size CBN Grinding Wheels,” Int. J. Adv. Manuf. Technol., 29(7–8), pp. 688–694. [CrossRef]
Tonshoff, H. K. , and Friemuth, T. , 2000, “ In-Process Dressing of Fine Diamond Wheels for Tool Grinding,” Precis. Eng., 24(1), pp. 58–61. [CrossRef]
Wang, X. K. , Ying, B. G. , and Liu, W. G. , 1996, “ EDM Dressing of Fine Grain Super Abrasive Grinding Wheel,” J. Mater. Process. Technol., 62(4), pp. 299–302. [CrossRef]
Kubo, A. , Yan, J. , and Narita, K. , 2003, “ Electrocontact Discharge Dressing of a Resin-Bonded CBN Grinding Wheel and Its Performance,” Key Eng. Mater., 238–239, pp. 327–332.
Denkena, B. , Becker, J. C. , and Van der Meer, M. , 2004, “ Potential of Electro Contact Discharge Dressing Metod in Truing and Sharpening Superabrasive Grinding Wheels,” Key Eng. Mater., 257–258, pp. 353–359. [CrossRef]
Kunieda, M. , Lauwers, B. , Rajurkar, K. P. , and Schumacher, B. M. , 2005, “ Advancing EDM Through Fundamental Insight Into the Process,” CIRP Ann. Manuf. Technol., 54(2), pp. 64–87. [CrossRef]
Xu, M. M. , Li, D. D. , Hu, D. J. , and Jia, Y. , 2012, “ Laminated Manufacturing and Milling Electrical Discharge Dressing of Metal-Bonded Diamond Grinding Wheels,” Proc. Inst. Mech. Eng. Part B, 226(1), pp. 137–144. [CrossRef]
Weingartner, E. , Roth, R. , Kuster, F. , Boccadoro, M. , and Fiebelkorn, F. , 2012, “ Electrical Discharge Dressing and Its Influence on Metal Bonded Diamond Wheels,” CIRP Ann. Manuf. Technol., 61(1), pp. 183–186. [CrossRef]
Klink, A. , 2010, “ Wire Electro Discharge Trueing and Dressing of Fine Grinding Wheels,” CIRP Ann. Manuf. Technol., 59(1), pp. 235–238. [CrossRef]
Xie, J. , and Tamaki, J. , 2008, “ An Experimental Study on Discharge Mediums Used for Electro-Contact Discharge Dressing of Metal-Bonded Diamond Grinding Wheel,” J. Mater. Process. Technol., 208(1–3), pp. 239–244. [CrossRef]
Xie, J. , Xua, J. , Tang, Y. , and Tamaki, J. , 2008, “ 3D Graphical Evaluation of Micro-Scale Protrusion Topography of Diamond Grinding Wheel,” Int. J. Mach. Tools Manuf., 48(11), pp. 1254–1260. [CrossRef]
Cai, L. R. , Li, M. , Yang, H. , and Hu, D. J. , 2012, “ Electrical Discharge Dressing Metal-Bonded Diamond Grinding Wheels With Various Mediums,” Proc. Inst. Mech. Eng., Part B, 227(1), pp. 102–108. [CrossRef]
Jia, Y. , Wei, C. J. , Kim, B. S. , Hu, D. J. , and Ni, J. , 2009, “Feasibility Study on Near-Dry Electrical Discharge Dressing of Metal Bonded Diamond Grinding Wheels,” ASME Paper No. MSEC2009-84151.
Wan, D. P. , Wang, Y. , and Hu, D. J. , 2008, “ In Situ Truing/Dressing of Diamond Wheel for Precision Grinding,” Chin. J. Mech. Eng., 21(3), pp. 46–51. [CrossRef]
Xie, J. , and Tamaki, J. , 2006, “ In-Process Evaluation of Grit Protrusion Feature for Fine Diamond Grinding Wheel by Means of Electro-Contact Discharge Dressing,” J. Mater. Process. Technol., 180(1–3), pp. 83–90. [CrossRef]
Wang, Y. , Zhou, X. J. , and Hu, D. J. , 2006, “ Study on Dry Electrical Discharge Assisted Profile Truing and Dressing of Diamond Wheel,” Key Eng. Mater., 315–316, pp. 701–705.
Wang, Y. , Zhou, X. J. , and Hu, D. J. , 2006, “ An Experimental Investigation of Dry-Electrical Discharge Assisted Truing and Dressing of Metal Bonded Diamond Wheel,” Int. J. Mach. Tools Manuf., 46(3–4), pp. 333–342. [CrossRef]
Xie, J. , Liu, Y. J. , Tang, Y. , Kubo, A. , and Tamaki, J. , 2009, “ Ground Surface Integrity of Granite by Using Dry Electro-Contact Discharge Dressing of #600 Diamond Grinding Wheel,” J. Mater. Process. Technol., 209(18–19), pp. 6004–6009. [CrossRef]
Lu, Y. J. , Xie, J. , and Si, X. H. , 2015, “ Study on Micro-Topographical Removals of Diamond Grain and Metal Bond in Dry Electro-Contact Discharge Dressing of Coarse Diamond Grinding Wheel,” Int. J. Mach. Tools Manuf., 88, pp. 118–130. [CrossRef]
Wegener, K. , Weingartner, E. , and Blaser, M. , 2013, “ In-Process Wire Electrical Discharge Dressing (IWEDD) of Metal Bonded Diamond Wheels,” CIRP Ann. Manuf. Technol., 62(1), pp. 339–342. [CrossRef]
Weingartner, E. , Wegener, K. , and Kuster, F. , 2012, “ Applying Wire Electrical Discharge Dressing (WEDD) to Improve Grinding Performance of Metal Bounded Diamond Wheels,” Procedia CIRP, 1, pp. 365–370. [CrossRef]
Rhoney, B. K. , Shih, A. J. , Scattergood, R. O. , Akemon, J. L. , Gust, D. J. , and Grant, M. B. , 2002, “ Wire Electrical Discharge Machining of Metal Bond Diamond Wheels for Ceramic Grinding,” Int. J. Mach. Tools Manuf., 42(12), pp. 1355–1362. [CrossRef]
Cai, L.-R. , Jia, Y. , and Hu, D.-J. , 2009, “ Dressing of Metal-Bonded Superabrasive Grinding Wheels by Means of Mist-Jetting Electrical Discharge Technology,” J. Mater. Process. Technol., 209(2), pp. 779–784. [CrossRef]
Xu, M. M. , Li, D. D. , Hu, D. J. , and Wang, Z. M. , 2012, “ Mist-Ietting Electrical Discharge Dressing (MEDD) of Nonmetal Bond Diamond Grinding Wheels Using Conductive Coating,” Int. J. Adv. Manuf. Technol., 63(9–12), pp. 955–961. [CrossRef]
Kramer, D. , Rehsteiner, F. , and Schumacher, B. , 1999, “ ECD(Electrochemical in-Process Controlled Dressing), a New Method for Grinding of Modern High-Performance Cutting Materials to Highest Quality,” CIRP Ann. Manuf. Technol., 48(1), pp. 265–268. [CrossRef]
Ohmori, H. , and Nakagawa, T. , 1995, “ Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID (Electrolytic In-Process Dressing) Grinding With Superfine Grain Metallic Bond Wheels,” CIRP Ann. Manuf. Technol., 44(1), pp. 287–290. [CrossRef]
Nebashi, N. , Wakabayashi, K. , Yamada, M. , and Masuzawa, T. , 1998, “ In-Process Trueing/Dressing of Grinding Wheels by WEDG and ELID,” Int. J. Electr. Mach., 3, pp. 33–38.
Guo, B. , and Zhao, Q. L. , 2015, “ On-Machine Dry Electric Discharge Truing of Diamond Wheels for Micro-Structured Surfaces Grinding,” Int. J. Mach. Tools Manuf., 88, pp. 62–70. [CrossRef]
Chen, M. J. , Li, Z. A. , Yu, B. , Peng, H. , and Fang, Z. , 2013, “ On-Machine Precision Preparation and Dressing of Ball-Headed Diamond Wheel for the Grinding of Fused Silica,” Chin. J. Mech. Eng., 26(5), pp. 982–987. [CrossRef]
Ohmori, H. , and Nakagawa, T. , 1990, “ Mirror Surface Grinding of Silicon Wafers With Electrolytic In-Process Dressing,” CIRP Ann. Manuf. Technol., 39(1), pp. 329–332. [CrossRef]
Ohmori, H. , Takahashi, I. , and Bandyopadhyay, B. P. , 1996, “ Ultra-Precision Grinding of Structural Ceramics by Electrolytic In-Process Dressing (ELID) Grinding,” J. Mater. Process. Technol., 57(3–4), pp. 272–277. [CrossRef]
Zhang, C. H. , Ohmori, H. , and Li, W. , 2000, “ Small-Hole Machining of Ceramic Material With Electrolytic Interval-Dressing (ELID-II) Grinding,” J. Mater. Process. Technol., 105(3), pp. 284–289. [CrossRef]
Ohmori, H. , Li, W. , Makinouchi, A. , and Bandyopadhyay, B. P. , 2000, “ Efficient and Precision Grinding of Small Hard and Brittle Cylindrical Parts by the Centerless Grinding Process Combined With Electro-Discharge Truing and Electrolytic in-Process Dressing,” J. Mater. Process. Technol., 98(3), pp. 322–327. [CrossRef]
Saleh, T. , Biswas, I. , Lim, H. S. , and Rahman, M. , 2008, “ In-Process Truing of Metal-Bonded Diamond Wheel for Electrolytic In-Process Dressing (ELID) Grinding,” Int. J. Precis. Eng. Manuf., 9(3), pp. 3–6. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01013822

Figures

Grahic Jump Location
Fig. 1

Schematic of wheel truing and dressing: (a) before truing and dressing and (b) after truing and dressing

Grahic Jump Location
Fig. 2

Discussion about diamond wheel dressing in this paper

Grahic Jump Location
Fig. 3

Schematic diagram of the truing and dressing system [18] (Reprinted with permission from Elsevier © 2001)

Grahic Jump Location
Fig. 4

Surfaces of diamond wheels dressed by (a) a SiC roller and (b) a steel roller [18] (Reprinted with permission from Elsevier © 2001)

Grahic Jump Location
Fig. 5

On-machine rotary green silicon carbide rod (ORGCR) truing mechanism: (a) initial truing, and (b) truing process [38] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 6

ORGCR mutual-wear truing mode of arc-shaped diamond wheel: (a) truing mode and (b) truing motion paths [38] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 7

Prismatic monocrystalline rotary diamond dresser [61] (Reprinted with permission from JSME ©2013)

Grahic Jump Location
Fig. 8

Dressing mechanism of rotary diamond dressing: (a) down-cut and (b) up-cut [61] (Reprinted with permission from JSME ©2013)

Grahic Jump Location
Fig. 9

The truing and dressing configuration on a cylindrical grinding machine [63] (Reprinted with permission from Elsevier © 2000)

Grahic Jump Location
Fig. 10

(a) Illustration [39] and (b) working principle [66] of the mechanical dressing with crushing rollers (Reprinted with permission from Elsevier © 2008 for Fig. 10a and from © Dirk Hessel for Fig. 10b)

Grahic Jump Location
Fig. 11

Illustration of profile crushing [39] (Reprinted with permission from Elsevier © 2008)

Grahic Jump Location
Fig. 12

Illustration of profile truing and dressing of diamond wheels with ultrafine grain sizes [67] (Reprinted with permission from Elsevier © 2005)

Grahic Jump Location
Fig. 13

Illustration of the lapping mechanisms in a dressing process [67] (Reprinted with permission from Elsevier © 2005)

Grahic Jump Location
Fig. 14

A schematic sketch of the device for the soft-elastic dressing [69]: 1—surface grinding machine working table, 2—abrasive belt wheel, 3—abrasive belt, 4—contact wheel, 5—wheel main spindle, 6—grinding liquid nozzle, 7—body, and 8—belt rolling wheel (Reprinted with permission from Elsevier © 2000)

Grahic Jump Location
Fig. 15

Schematic of dressing process carried out by Su et al. [70] (Reprinted with permission from Springer © 2016)

Grahic Jump Location
Fig. 16

Plate wheel dressing setup [70] (Reprinted with permission from Springer © 2016)

Grahic Jump Location
Fig. 17

A schematic of an apparatus used for pulsed laser dressing [96] (Reprinted with permission from Elsevier © 2014)

Grahic Jump Location
Fig. 18

Principle of laser dressing [97] (Reprinted with permission from Elsevier © 2006)

Grahic Jump Location
Fig. 19

Typical surface topography of a bronze-bonded diamond wheel before laser truing and dressing: (a) SEM observation and (b) microscope photo [94] (Reprinted with permission from Elsevier © 2010)

Grahic Jump Location
Fig. 20

Typical surface topography of a bronze-bonded diamond wheel after laser truing and dressing: (a) SEM observation and (b) microscope photo [94] (Reprinted with permission from Elsevier © 2010)

Grahic Jump Location
Fig. 21

Calculated ablation depth in the wheel surface versus laser power density [94] (Reprinted with permission from Elsevier © 2010)

Grahic Jump Location
Fig. 22

The temperature fields induced by laser ablation under different power density: (a) I = 2.5 × 108 W/cm2, f = 1 kHz, (b) I = 3.5 × 108 W/cm2, f = 1 kHz and (c) I = 4.5 × 108 W/cm2, f = 1 kHz [94] (Reprinted with permission from Elsevier © 2010)

Grahic Jump Location
Fig. 23

The temperature fields induced by laser ablation under different repetition frequencies: (a) I = 3.5 × 108 W/cm2, f = 0.5 kHz, (b) I = 3.5 × 108 W/cm2, f = 1 kHz, (c) I = 3.5 × 108 W/cm2, f = 2 kHz [94] (Reprinted with permission from Elsevier © 2010)

Grahic Jump Location
Fig. 24

Schematical diagram of phase explosion in laser dressing [104] (Reprinted with permission from Springer © 2015)

Grahic Jump Location
Fig. 25

Schematic of laser dressing of diamond wheels from radial or tangential directions: (a) action of laser beam projected from radial or tangential direction, (b) wheel surface after laser dressing with different directions, and (c) online tangential laser profiling system [87,105] (Reprinted with permission from Elsevier © 2014 for Fig. 25a and 25b, and from Springer © 2015 for Fig. 25c)

Grahic Jump Location
Fig. 26

Circular runout errors at different locations on grinding wheel surface (a) before and (b) after profiling [105] (Reprinted with permission from Springer © 2015)

Grahic Jump Location
Fig. 27

Micrograph of a laser trued (a) 90 deg kerf and (b) 0.5 mm tool profile radius [106] (Reprinted with permission from Elsevier © 2012)

Grahic Jump Location
Fig. 28

Micrographs of diamond grain: (a) before laser dressing and (b) after laser dressing [95] (Reprinted with permission from Elsevier © 2011)

Grahic Jump Location
Fig. 29

Schematic view of laser microstructuring (a) microstructured coarse-grained diamond wheel and (b) conventional coarse-grained diamond wheel [107] (Reprinted with permission from Elsevier © 2014)

Grahic Jump Location
Fig. 30

Section of grain surface of a laser-dressed diamond tool with positive clearance angle: (a) section of the wheel surface and (b) laser-dressed grain [109] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 31

Laser-assisted truing and dressing: (a) mechanism and (b) thermal model [33] (Reprinted with permission from Elsevier © 2002)

Grahic Jump Location
Fig. 32

The process involved in EDD a metal-bonded diamond grinding wheel [120] (Reprinted with permission from SAGE ©2012)

Grahic Jump Location
Fig. 33

Three-dimensional measurement of eroded crater (left) and schematic representation of its cross section [121] (Reprinted with permission from Elsevier © 2012)

Grahic Jump Location
Fig. 34

Simulated cross section of eroded craters in copper using two different peak currents (e.g., the peak current I1 = 88 A, I6 = 223 A) [121] (Reprinted with permission from Elsevier © 2012)

Grahic Jump Location
Fig. 35

Simulation results of graphitization due to single discharges in EDM [121] (Reprinted with permission from Elsevier © 2012)

Grahic Jump Location
Fig. 36

Experimental setup of dry electro-contact discharge dressing [131] (Reprinted with permission from Elsevier © 2009)

Grahic Jump Location
Fig. 37

Mechanism of dry electro-contact discharge dressing: (a) microremoval scheme, (b) SEM photo of Cu chip and (c) Raman spectra of diamond grain surface [132] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 38

WEDD-device mounted inside a grinding machine [133] (Reprinted with permission from Elsevier © 2013)

Grahic Jump Location
Fig. 39

SEM-micrographs of the metal-bonded diamond wheels: (a) SiC-dresses and (b) WED-dressed [134] (Reprinted with permission from Elsevier © 2012)

Grahic Jump Location
Fig. 40

Schematic of the experimental equipment with mist-jetting electrical discharge dressing method (EDDM) [136] (Reprinted with permission from Elsevier © 2009)

Grahic Jump Location
Fig. 41

Principle of the ECDM truing and dressing [31] (Reprinted with permission from Elsevier © 2001)

Grahic Jump Location
Fig. 42

On machine dry EDT principle of diamond wheels: (a) arc-shaped diamond wheel and (b) V-shaped diamond wheel [141] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 43

Schematic diagram of the LMMEDD method [120] (Reprinted with permission from SAGE ©2012)

Grahic Jump Location
Fig. 44

The schematic of the equipment in ELID grinding [144]: (a) system construction and (b) electrode detail (Reprinted with permission from Elsevier © 1996)

Grahic Jump Location
Fig. 45

Stages of in-process ED [144] (Reprinted with permission from Elsevier © 1996)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In