0
research-article

Residual Stress Distribution and the Concept of Total Fatigue Stress in Laser and Mechanically Formed Commercially Pure Grade 2 Titanium Alloy Plates

[+] Author and Article Information
Kadephi V Mjali

Cape Peninsula University of Technology, Department of Mechanical Engineering Cape Town, Western Cape, Republic of South Africa
vuyo.mjali@gmail.com

Annelize Els-Botes

Council for Scientific & Industrial Research (CSIR), Pretoria, Gauteng, Republic of South Africa
annelizebotes3@gmail.com

Peter Madindwa Mashinini

University of Johannesburg, Department of Mechanical & Industrial Engineering Technology Johannesburg, Gauteng, Republic of South Africa
mmashinini@uj.ac.za

1Corresponding author.

ASME doi:10.1115/1.4037438 History: Received July 19, 2017; Revised July 21, 2017

Abstract

This paper discusses the investigation of residual stresses developed as a result of mechanical and laser forming processes in commercially pure grade 2 titanium alloy plates as well as the concept of total fatigue stress. The intention of the study was to bend the plates using the respective processes to a final radius of 120mm using both processes. The hole drilling method was used to measure residual strains in all the plates. High stress gradients were witnessed in the current research and possible cases analysed and investigated. The effects of processing speeds and powers used also played a significant role in the residual stress distribution in all the formed plates. A change in laser power resulted in changes to residual stress distribution in the plates evaluated. This study also dwells into how the loads that are not normally incorporated in fatigue testing influence fatigue life of commercially pure grade 2 titanium alloy plates. Also, the parent material was used to benchmark the performance of the two forming processes in terms of stresses developed. Residual stresses developed from the two forming processes and the parent material used together with the mean stress was incorporated into the alternating stress from the fatigue machine to develop the concept of total fatigue stress. This exercise indicated the effect of these stresses on the fatigue life of the parent material, laser and mechanically formed plate samples. A strong link between these stresses was obtained and formulae explaining the relationship formulated. A comparison between theory and practical application shown by test results is found to be satisfactory in explaining concerns that may arise.The laser forming process is more influential in the development of residual stress, compared to the mechanical forming process. With each parameter change in laser forming there is a change in residual stress arrangement. Under the influence of laser forming the stress is more tensile in nature making the laser formed more susceptible to early fatigue failure. The laser and mechanical forming processes involve bending of the plate samples and most of these samples experienced a two-dimensional defect which is a dislocation. The dislocation is the defect responsible for the phenomenon of slip by which most metals deform plastically. Also the high temperatures experienced in laser forming were one of the major driving factors in bending.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In