0
research-article

Ball Burnishing Under High Velocities Using a New Rolling Tool Concept

[+] Author and Article Information
Lars Hiegemann

Institute of Forming Technology and Lightweight Construction, TU Dortmund University, Baroper Str. 303, 44227 Dortmund, Germany
lars.hiegemann@iul.tu-dortmund.de

A. Erman Tekkaya

Institute of Forming Technology and Lightweight Construction, TU Dortmund University, Baroper Str. 303, 44227 Dortmund, Germany
erman.tekkaya@iul.tu-dortmund.de

1Corresponding author.

ASME doi:10.1115/1.4037431 History: Received July 19, 2017; Revised July 24, 2017

Abstract

Ball burnishing is a process used to smooth rough surfaces. For not rotational symmetric parts, the process is typically conducted on milling machines. Since it is an incremental process, it is relatively time consuming. Therefore, a rolling tool is developed, which superposes the rotation of the milling spindle with the feed of the machine to increase the rolling velocity. In order to achieve constant rolling forces, hydrostatic ball burnishing tools are used. Within this work, the influence of this tool concept on the processing time as well as on the leveling of surface irregularities is investigated. This is achieved by a comparison with a conventional ball burnishing process. Finally, the rotating tool is used to investigate the influence of high rolling speeds on the leveling of the surface. All experiments were carried out with thermally coated specimens. A model for calculating the strain rates at the roughness peaks during ball burnishing is derived. For the experiments carried out with the rotating rolling tool, rolling velocities of 50,000 mm/min were realized. Calculations with the developed model showed that this results in local strain rates at the roughness peaks of up to 1,384 s-1. In addition, the flow stresses at the roughness peaks were calculated. Compared with quasi static experiments, the flow stress drops to less than the half under high velocities. This results in a better leveling of the surface for rolling velocities between 10,000 mm/min and 25,000 mm/min. A further rise of the rolling speed increases the flow stress again and thereby reduces the possible leveling.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In