Research Papers

A Discussion on Material Removal Mechanisms in Grinding of Cemented Carbides

[+] Author and Article Information
Christian Wirtz

Laboratory for Machine Tools and
Production Engineering (WZL),
RWTH Aachen University,
Aachen 52074, Germany
e-mail: C.Wirtz@wzl.rwth-aachen.de

Sebastian Mueller, Patrick Mattfeld, Fritz Klocke

Laboratory for Machine Tools and
Production Engineering (WZL),
RWTH Aachen University,
Aachen 52074, Germany

1Corresponding author.

Manuscript received February 1, 2017; final manuscript received May 30, 2017; published online November 2, 2017. Assoc. Editor: Xun Chen.

J. Manuf. Sci. Eng 139(12), 121002 (Nov 02, 2017) (6 pages) Paper No: MANU-17-1067; doi: 10.1115/1.4036995 History: Received February 01, 2017; Revised May 30, 2017

In the literature, cemented carbides are described as hard and brittle materials. The material removal mechanisms in grinding of brittle materials, such as cemented carbides, significantly differ from the material removal mechanisms of ductile materials [13]. The material removal mechanisms in grinding of ductile materials are comparatively well investigated in comparison to the material removal mechanisms in grinding of brittle materials. In the existing literature, it has been shown that the material removal mechanisms in grinding of cemented carbides can be ductile or brittle. The present material removal mechanisms are dependent on the thermomechanical stress collective, which acts on the surface zone of the cemented carbides. In this paper, the material removal mechanisms in grinding of cemented carbides are discussed fundamentally. In order to analyze the occurring material removal mechanisms in grinding of cemented carbides, single grain cutting tests were carried out. Subsequent to the tests, the surface zone of the cemented carbide has been analyzed in detail. Therefore, scanning electron micrographs have been made to analyze the workpiece surface to identify the transition from predominantly ductile to predominantly brittle material behavior. Furthermore, focused ion beam (FIB) preparation, which has minimum invasive influence on the subsurface, was applied in order to get an insight into the surface zone. The FIB lamellae have been analyzed with transmission electron microscopy (TEM) to get a better understanding of the impact of material removal mechanisms on the surface zone. The drawn conclusions contribute to an improved process understanding in grinding of cemented carbides.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Marshall, D. B. , Evans, A. G. , Yakub, B. T. K. , Tien, J. W. , and Kino, G. S. , 1983,” The Nature of Machining Damage in Brittle Materials,” Proc. R. Soc. A: Math., Phys. Eng. Sci., 385(1789), pp. 461–475. [CrossRef]
Saljé, E. , and Möhlen, H. , 1987, “ Prozeßoptimierung Beim Schleifen Keramischer Werkstoffe,” Ind. Diamanten Rundsch., 21(4), pp. 243–247.
Klocke, F. , Ed., 2009, Manufacturing Processes, Springer, Berlin. [CrossRef]
Denkena, B. , Köhler, J. , and Schindler, A. , 2014, “ Behavior of the Magnetic Abrasive Tool for Cutting Edge Preparation of Cemented Carbide End Mills,” Prod. Eng. Res. Dev., 8(5), pp. 627–633. [CrossRef]
Jia, K. , Fischer, T. E. , and Gallois, B. , 1998, “ Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites,” Nanostruct. Mater., 10(5), pp. 875–891. [CrossRef]
Yang, J. , Odén, M. , Johansson-Jõesaar, M. P. , and Llanes, L. , 2014, “ Grinding Effects on Surface Integrity and Mechanical Strength of WC-Co Cemented Carbides,” Proc. CIRP, 13, pp. 257–263. [CrossRef]
Antoniadis, A. , Vidakis, N. , and Bilalis, N. , 2002, “ Fatigue Fracture Investigation of Cemented Carbide Tools in Gear Hobbing—Part 1: FEM Modeling of Fly Hobbing and Computational Interpretation of Experimental Results,” ASME J. Manuf. Sci. Eng., 124(4), pp. 784–791. [CrossRef]
Ema, S. , 1992, “ Cutting Performance of a Cemented Carbide Drill With Three Cutting Edges,” ASME J. Manuf. Sci. Eng., 114(1), pp. 116–119. [CrossRef]
Kim, D. , Beal, A. , and Kwon, P. , 2016,” Effect of Tool Wear on Hole Quality in Drilling of Carbon Fiber Reinforced Plastic–Titanium Alloy Stacks Using Tungsten Carbide and Polycrystalline Diamond Tools,” ASME J. Manuf. Sci. Eng., 138(3), p. 31006. [CrossRef]
Denkena, B. , Friemuth, T. , and Spenger, C. , 2003, “ Modeling and Process Design for Different Grinding Operations of Carbide Tools,” Prod. Eng. Res. Dev., 10(1), pp. 15–18.
Friemuth, T. , 2002,” Herstellung Spanender Werkzeuge,” Habilitation, Institut für Fertigungstechnik und Werkzeugmaschinen, Universität Hannover, Hannover, Germany.
Uhlmann, E. , and Schröer, N. , 2016,” Werkzeugschleifen mit Hybridschleifscheiben: Vergleich Unterschiedlicher Schleifscheibenbindungsspezifikationen Beim Nutentiefschliff von Hartmetall,” wt Werkstattstech. Online, 106(3), pp. 181–186.
von Brevern, P. , 1996, “ Untersuchungen zum Tiefschleifen von Hartmetall Unter Besonderer Berücksichtigung von Schleiföl als Kühlschmierstoff,” Fortschrittberichte VDI, Vol. 2, VDI-Verlag, Düsseldorf, Germany. [PubMed] [PubMed]
Schwarz, M. , 2006, “ High Quality im Präzisionsschleifen Erfordert Hoch Spezialisierte Kühlschmierstoffe,” Diamond Business, 1, pp. 1–45.
Eyrisch, T. , 2009, “ Optimierung der Herstellung von Vollhartmetallwerkzeugen: Strategie zur Vermeidung von Oberflächenschädigungen,” Dissertation, Fertigungstechnik und Betriebsorganisation, TU Kaiserslautern, Kaiserslautern, Germany.
Hegeman, J. , de Hosson, J. , and de With, G. , 2001, “ Grinding of WC–Co Hardmetals,” Wear, 248(1–2), pp. 187–196. [CrossRef]
Hübert, C. , 2012, “ Schleifen von Hartmetall- und Vollkeramik-Schaftfräsern,” Dissertation, Produktionstechnisches Zentrum Berlin, TU Berlin, Berlin.
Maldaner, J. , 2008,” Verbesserung des Zerspanverhaltens von Werkzeugen mit Hartmetall-Schneidelementen Durch Variation der Schleifbearbeitung,” Dissertation, TU Kaiserslautern, Kassel, Germany.
Ren, Y. H. , Zhang, B. , and Zhou, Z. X. , 2009, “ Specific Energy in Grinding of Tungsten Carbides of Various Grain Sizes,” CIRP Ann. Manuf. Technol., 58(1), pp. 299–302. [CrossRef]
Yin, L. , Spowage, A. C. , Ramesh, K. , Huang, H. , Pickering, J. P. , and Vancoille, E. , 2004, “ Influence of Microstructure on Ultraprecision Grinding of Cemented Carbides,” Int. J. Mach. Tools Manuf., 44(5), pp. 533–543. [CrossRef]
Zelwer, O. , and Malkin, S. , 1980, “ Grinding of WC-Co Cemented Carbides,” J. Eng. Ind., 102(3), pp. 209–220. [CrossRef]
Abdullah, A. , Pak, A. , Farahi, M. , and Barzegari, M. , 2007, “ Profile Wear of Resin-Bonded Nickel-Coated Diamond Wheel and Roughness in Creep-Feed Grinding of Cemented Tungsten Carbide,” J. Mater. Process. Technol., 183(2–3), pp. 165–168. [CrossRef]
Badger, J. , 2015, “ Grinding of Sub-Micron-Grade Carbide: Contact and Wear Mechanisms, Loading, Conditioning, Scrubbing and Resin-Bond Degradation,” CIRP Ann. Manuf. Technol., 64(1), pp. 341–344. [CrossRef]
Luo, S. Y. , Liu, Y. C. , Chou, C. C. , and Chen, T. C. , 2001, “ Performance of Powder Filled Resin-Bonded Diamond Wheels in the Zvertical Dry Grinding of Tungsten Carbide,” J. Mater. Process. Technol., 118(1–3), pp. 329–336. [CrossRef]
Zhan, Y. J. , Li, Y. , Huang, H. , and Xu, X. P. , 2009, “ Wear of Brazed Diamond Wheel in Grinding of Cemented Carbide,” Key Eng. Mater., 416, pp. 198–204. [CrossRef]
Exner, H. E. , 1979, “ Physical and Chemical Nature of Cemented Carbides,” Int. Met. Rev., 24(1), pp. 149–173. [CrossRef]
van den Berg, H. , 2007, “ Hardmetals: Trends in Development and Application,” Powder Metall., 50(1), pp. 7–10. [CrossRef]
Klocke, F. , Wirtz, C. , Mueller, S. , and Mattfeld, P. , 2016, “ Analysis of the Material Behavior of Cemented Carbides (WC-Co) in Grinding by Single Grain Cutting Tests,” Proc. CIRP, 46, pp. 209–213. [CrossRef]
Wirtz, C. , Vits, F. , Mattfeld, P. , and Klocke, F. , 2016, “ Schleifen von WC-Co-Hartmetallen: Methodik zur Systematischen Analyse des Zerspanverhaltens,” wt Werkstattstech. Online, 106(6), pp. 374–379.
Arif, M. , Xinquan, Z. , Rahman, M. , and Kumar, S. , 2013, “ A Predictive Model of the Critical Undeformed Chip Thickness for Ductile–Brittle Transition in Nano-Machining of Brittle Materials,” Int. J. Mach. Tools Manuf., 64, pp. 114–122. [CrossRef]
Zhang, X. , Arif, M. , Liu, K. , Kumar, A. S. , and Rahman, M. , 2013, “ A Model to Predict the Critical Undeformed Chip Thickness in Vibration-Assisted Machining of Brittle Materials,” Int. J. Mach. Tools Manuf., 69, pp. 57–66. [CrossRef]
Tang, F. , and Zhang, L. , 2014, “ Subsurface Nanocracking in Monocrystalline Si (001) Induced by Nanoscratching,” Eng. Fract. Mech., 124–125, pp. 262–271. [CrossRef]
Meng, B. , Zhang, Y. , and Zhang, F. , 2016, “ Material Removal Mechanism of 6H-SiC Studied by Nano-Scratching With Berkovich Indenter,” Appl. Phys. A, 122(3), p. 235. [CrossRef]
Pennycook, S. J. , and Nellist, P. D. , Eds., 2011, Scanning Transmission Electron Microscopy: Imaging and Analysis, Springer, New York. [CrossRef]


Grahic Jump Location
Fig. 1

Structure and properties of cemented carbides (WC-Co)

Grahic Jump Location
Fig. 2

Single grain cutting-process kinematic according to Refs. [28,29]

Grahic Jump Location
Fig. 3

Microstructure after the surface preparation and identified brittle material removal mechanisms according to Refs. [28,29]: (1) cracks, (2) disruption, (3) bulging, (4) flaking, (5) continuous breakouts

Grahic Jump Location
Fig. 4

Cemented carbide lamella after FIB-preparation

Grahic Jump Location
Fig. 5

Positions of the investigated FIB lamellae

Grahic Jump Location
Fig. 6

TEM images of the cemented carbide after workpiece preparation (1)

Grahic Jump Location
Fig. 7

TEM images of the cemented carbide before ductile–brittle transition (2)

Grahic Jump Location
Fig. 8

TEM images of the cemented carbide after ductile–brittle transition (3)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In