Review Article

Analyses of Friction Stir Riveting Processes: A Review

[+] Author and Article Information
Haris Ali Khan

The Harold and Inge Marcus Department of
Industrial and Manufacturing Engineering,
Penn State University,
State College, PA 16801
e-mail: hak15@psu.edu

Jingjing Li

The Harold and Inge Marcus Department of
Industrial and Manufacturing Engineering,
Penn State University,
State College, PA 16801
e-mail: jul572@engr.psu.edu

Chenhui Shao

Department of Mechanical
Science and Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL 61801
e-mail: chshao@illinois.edu

1Corresponding author.

Manuscript received February 16, 2017; final manuscript received May 19, 2017; published online July 18, 2017. Assoc. Editor: Wayne Cai.

J. Manuf. Sci. Eng 139(9), 090801 (Jul 18, 2017) (12 pages) Paper No: MANU-17-1101; doi: 10.1115/1.4036909 History: Received February 16, 2017; Revised May 19, 2017

This study presents detailed analyses of variant joining processes under the category of friction stir riveting (FSR) that are applied to assemble similar or dissimilar materials by integrating the advantages of both friction stir process and mechanical fastening. It covers the operating principle of FSR methods along with the insights into various process parameters responsible for successful joint formation. The paper further evaluates the researches in friction stir-based riveting processes, which unearth the enhanced metallurgical and mechanical properties, for instance microstructure refinement, local mechanical properties and improved strength, corrosion, and fatigue resistance. Advantages and limitations of the FSR processes are then presented. The study is concluded by summarizing the key analyses and proposing the potential areas for future research.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Samuel, J. D. , 2012, “Friction-Stir Riveting: An Innovative Process for Joining Difficult-to-Weld Materials,” M.Sc. thesis, University of Toledo, Toledo, OH. http://www.eng.utoledo.edu/mime/graduate/docs/dissertations/Masters/2012/Friction-Stir%20Riveting%20an%20Innovative%20Process%20for%20Joining%20Difficult-to-Weld%20Materials.pdf
Huang, Y. , Wang, J. , Wan, L. , Meng, X. , Liu, H. , and Li, H. , 2016, “Self-Riveting Friction Stir Lap Welding of Aluminum Alloy to Steel,” Mater. Lett., 185, pp. 181–184. [CrossRef]
Mustafa, K. K. , Ugur, E. , and Baris, B. , 2016, “Critical Analysis of Friction Stir-Based Manufacturing Processes,” Int. J. Adv. Manuf. Technol., 85(5), pp. 1687–1712.
Ma, Z. Y. , 2008, “Friction Stir Processing Technology: A Review,” Metall. Mater. Trans. A, 39(A), pp. 642–658. [CrossRef]
Nassar, S. A. , and Kazemi, A. , 2015, “Clamp Load Decay Due to Material Creep of Lightweight-Material Joints Under Cyclic Temperature,” ASME J. Manuf. Sci. Eng., 137(5), p. 051025. [CrossRef]
Nassar, S. A. , and Sakai, K. , 2015, “Effect of Cyclic Heat, Humidity, and Joining Method on the Static and Dynamic Performance of Lightweight Multimaterial Single-Lap Joints,” ASME J. Manuf. Sci. Eng., 137(5), p. 051026. [CrossRef]
Rob, T. , 2007, Manufacturing Processes for Design Professionals, Thames and Hudson Publishing Company, London.
Luhm, R. , 1996, “Crowned Solid Rivet,” ALLFAST Fastening Systems, City of Industry, CA, U.S. Patent No. US5580202 A. https://www.google.ch/patents/US5580202
Stanley, 2017, “Pop Rivets Selection Factors,” Stanley, Buenos Aires, AR, accessed May 19, 2017, http://www.stanleyengineeredfastening.com/brands/pop/rivets/selection-factors
Hood, O. H. , 1950, “Blind Rivet,” Huck Manufacturing Co., Carson, CA, U.S. Patent No. US 2531270 A. https://www.google.com/patents/US2531270
Neugebauer, R. , Kraus, C. , and Dietrich, S. , 2008, “Advances in Mechanical Joining of Magnesium,” CIRP Ann. Manuf. Technol., 57(1), pp. 283–286. [CrossRef]
Melhem, G. N. , Bandyopadhyay, S. , and Sorrell, C. C. , 2014, “Use of Aerospace Fasteners in Mechanical and Structural Applications,” Ann. J. Mater. Sci. Eng., 1(4), p. 5. http://austinpublishinggroup.com/material-science-engineering/fulltext/amse-v1-id1016.php
Booth, G. S. , Olivier, C. A. , Westgate, S. A. , Liebrecht, F. , and Braunling, S. , 2000, “Self-Piercing Riveted Joints and Resistance Spot Welded Joints in Steel and Aluminum,” SAE Paper No. 2000-01-2681.
Wang, J. W. , Liu, Z. X. , and Shang, Y. Y. , 2011, “Self-Piercing Riveting of Wrought Magnesium AZ31 Sheets,” ASME J. Manuf. Sci. Eng., 133(3), p. 031009. [CrossRef]
Yasube, Y. , Kishimoto, K. , Kato, T. , and Mori, K. , 2010, “Mechanical Clinching of Hot-Dip Zinc-Aluminum Alloy Coated Steel Sheets,” J. Jpn. Soc. Technol. Plast., 51(593), p. 592. [CrossRef]
Tatsuya, S. , Gen, M. , Yasuaki, N. , Kenji, S. , Yasunobu, M. , Hatsuhiko, O. , and Tetsuro, N. , 2013, “Dissimilar Metal Joining Technologies for Steel Sheet and Aluminum Alloy Sheet in Auto Body,” Nippon Steel, Tokyo, Japan, Report No. 103. http://www.nssmc.com/en/tech/report/nsc/pdf/103-14.pdf
Wayne, M. T. , Edward, D. N., James, C. N., Michael, G. M., Peter, T., and Christopher, J. D., 1991, “Improvements Relating to Friction Welding,” European Patent No. EP0615480B1. http://www.google.co.in/patents/EP0653265A2?cl=en
Fratini, L. , Barcellona, A. , Buffa, G. , and Palmeri, D. , 2007, “Friction Stir Spot Welding of AA6082-T6: Influence of the Most Relevant Process Parameters and Comparison With Classic Mechanical Fastening Techniques,” Proc. Inst. Mech. Eng., Part B, 221(7), pp. 1111–1118. [CrossRef]
Tozaki, Y. , Uematsu, Y. , and Tokaji, K. , 2007, “Effect of Tool Geometry on Microstructure and Static Strength in Friction Stir Spot Welded Aluminum Alloys,” Int. J. Mach. Tools Manuf., 47(15), pp. 2230–2236. [CrossRef]
Brandal, G. , Yao, Y. L. , and Naveed, S. , 2015, “Biocompatibility and Corrosion Response of Laser Joined NiTi to Stainless Steel Wires,” ASME J. Manuf. Sci. Eng., 137(3), p. 031015. [CrossRef]
Balasubramanian, N. , Mishra, R. S. , and Krishnamurthy, K. , 2011, “Process Forces During Friction Stir Channeling in an Aluminum Alloy,” Int. J. Mater. Prod. Technol., 211(2), pp. 305–311. [CrossRef]
Yang, X. W. , Fu, T. , and Li, W. Y. , 2014, “Friction Stir Spot Welding: A Review on Joint Macro and Microstructure, Property, and Process Modelling,” Adv. Mater. Sci. Eng., 2014, p. 697170.
Hong, S. H. , Sung, S.-J. , and Pan, J. , 2015, “Failure Mode and Fatigue Behavior of Dissimilar Friction Stir Spot Welds in Lap-Shear Specimens of Transformation Induced Plasticity Steel and Hot-Stamped Boron Steel Sheets,” ASME J. Manuf. Sci. Eng., 137(5), p. 051023. [CrossRef]
Fraser, K. A. , St-Georges, L. , and Kiss, L. I. , 2014, “Optimization of Friction Stir Welding Tool Advance Speed Via Monte Carlo Simulation of the Friction Stir Welding Process,” Materials, 7(5), pp. 3435–3452. [CrossRef]
Mazda, 2003, “Mazda Develops World's First Aluminum Joining Technology Using Friction Heat,” Mazda Motor Corporation, Hiroshima, Japan, accessed June 5, 2017, http://www2.mazda.com/en/publicity/release/2005/200506/050602.html
Brooks, R., 2012, “Honda's New Approach for High-Volume Steel-to-Aluminum Welding,” Welding Design & Fabrication, Cleveland, OH, accessed Nov. 14, 2016, http://weldingdesign.com/processes/honda-s-new-approach-high-volume-steel-aluminum-welding
Amancio-Filho, S. T. , Beyer, M. , and dos Santos, J. F. , 2007, “Method of Connecting a Metallic Bolt to a Plastic Piece,” Gkss-Forschungszentrum Geesthacht Gmbh, Geesthacht, Germany, U.S. Patent No. US7575149 B2. https://www.google.co.in/patents/US7575149
Borges, M. F. , Amancio-Filho, S. T. , dos Santos, J. F. , Strohaecker, T. R. , and Mazzaferro, J. A. E. , 2012, “Development of Computational Models to Predict the Mechanical Behavior of Friction Riveting Joints,” Comp. Mater. Sci., 54, pp. 7–15. [CrossRef]
Li, Y. B. , Wei, Z. Y. , Wang, Z. Z. , and Li, Y. T. , 2013, “Friction Self-Piercing Riveting of Aluminum Alloy AA6061-T6 to Magnesium Alloy AZ31B,” ASME J. Manuf. Sci. Eng., 135(6), pp. 256–262. [CrossRef]
Ma, Y. , Lou, M. , Yang, Z. , and Li, Y. , 2015, “Effect of Rivet Hardness and Geometrical Features on Friction Self-Piercing Riveted Joint Quality,” ASME J. Manuf. Sci. Eng., 137(5), p. 054501. [CrossRef]
Genze, M. , 2012, “Friction-Stir Riveting: Characteristics of Friction-Stir Riveted Joints,” M.Sc. thesis, University of Toledo, Toledo, OH. http://www.eng.utoledo.edu/mime/graduate/docs/dissertations/Masters/2012/Friction-Stir%20Riveting%20Characteristics%20of%20Friction-Stir%20Riveted%20Joints.pdf
Miles, M. P. , 2014, “Friction Bit Joining of Materials Using a Friction Rivet,” Brigham Young University, Provo, UT, U.S. Patent No. US20140123470 A1. https://www.google.com/patents/US20140123470
Miles, M. P. , Kohkonen, K. , Packer, S. , Steel, R. , Siemssen, B. , and Sato, Y. S. , 2009, “Solid State Spot Joining of Sheet Materials Using Consumable Bit,” Sci. Technol. Weld. Joining, 14(1), pp. 72–77. [CrossRef]
Miles, M. P. , Kohkonen, K. , Weickum, B. , and Feng, Z. , 2009, “Friction Bit Joining of Dissimilar Material Combinations of High Strength Steel DP 980 and Al Alloy AA 5754,” SAE Paper No. 09M-0232.
Miles, M. P. , Feng, Z. , Kohkonen, K. , Weickum, B. , Steel, R. , and Lev, L. , 2010, “Spot Joining of AA 5754 and High Strength Steel Sheets by Consumable Bit,” Sci. Technol. Weld. Joining, 15(4), pp. 325–330. [CrossRef]
Evans, W. T. , Cox, C. , Gibson, B. T. , Strauss, A. M. , and Cook, G. E. , 2016, “Two-Sided Friction Stir Riveting by Extrusion: A Process for Joining Dissimilar Materials,” J. Manuf. Process., 23, pp. 115–121. [CrossRef]
Evans, W. T. , Gibson, B. T. , Reynolds, J. T. , Strauss, A. M. , and Cook, G. E. , 2015, “Friction Stir Extrusion: A New Process for Joining Dissimilar Materials,” Manuf. Lett., 5, pp. 25–28. [CrossRef]
Cox, C. D. , Gibson, B. T. , Delapp, D. R. , Strauss, A. M. , and Cook, G. E. , 2014, “A Method for Double-Sided Friction Stir Spot Welding,” J. Manuf. Process., 16(2), pp. 241–247. [CrossRef]
Stevenson, R. , and Wang, P. , 2005, “Friction Stir Riveting—Impact of Process Parameters on Joint Performance,” ASME Paper No. IMECE2005-79281.
Stevenson, R. , and Wang, P.-C. , 2006, “Friction Stir Rivet Drive System and Stir Riveting Methods,” General Motors Corporation, Detroit, MI, U.S. Patent No. US6988651 B2. https://www.google.com/patents/US6988651
Min, J. , Li, Y. , Carlson, B. E. , Hu, S. J. , Li, J. , and Lin, J. , 2015, “A New Single-Sided Blind Riveting Method for Joining Dissimilar Materials,” CIRP Ann. Manuf. Technol., 64(1), pp. 13–16. [CrossRef]
Zachary, T. A. , Yammamoto, B. , and Li, J. , 2016, “An Inexpensive, Portable Machine to Facilitate Testing and Characterization of the Friction Stir Blind Riveting Process,” ASME J. Manuf. Sci. Eng., 138(9), p. 095001. [CrossRef]
Wang, W. , 2015, “Quasi-Static Tensile Behavior of Friction Stir Blind Riveted Dissimilar Material Joints,” University of Hawaii at Manoa, Honolulu, HI.
Podlesak, F. , Hälsig, A. , Höfer, K. , Kaboli, R. , and Mayr, P. , 2015, “Spin-Blind-Riveting: Secure Joining of Plastic With Metal,” Weld. World, 59(6), pp. 927–932. [CrossRef]
Biermann, D. , and Liu, Y. , 2014, “Innovative Flow Drilling on Magnesium Wrought Alloy AZ31,” Procedia CIRP, 18, pp. 209–214.
Miller, S. F. , Tao, J. , and Shih, A. J. , 2006, “Friction Drilling of Cast Metal,” Int. J. Mach. Tools Manuf., 46(12–13), pp. 1526–1535. [CrossRef]
Altmeyer, J. , Dos Santos, J. F. , and Amancio-Filho, S. T. , 2014, “Effect of the Friction Riveting Process Parameters on the Joint Formation and Performance of Ti Alloy/Short-Fiber Reinforced Polyether Ether Ketone Joints,” Mater. Des., 60, pp. 164–176. [CrossRef]
Blaga, L. , Bancila, R. , dos Santos, J. F. , and Amancio-Filho, S. T. , 2013, “Friction Riveting of Glass-Fiber-Reinforced Polyetherimide Composite and Titanium Grade 2 Hybrid Joints,” Mater. Des., 50, pp. 825–829. [CrossRef]
Amancio-Filho, S. T. , Roeder, J. , Nunes, S. P. , dos Santos, J. F. , and Beckmann, F. , 2008, “Thermal Degradation of Polyetherimide Joined by Friction Riveting (Fricriveting)—Part I: Influence of Rotation Speed,” Polym. Degrad. Stab., 93(8), pp. 1529–1538. [CrossRef]
Min, J. , Li, Y. , Li, J. , Carlson, B. E. , and Lin, J. , 2015, “Mechanics in Frictional Penetration With a Blind Rivet,” J. Mater. Process. Technol., 222, pp. 268–279. [CrossRef]
Schmidt, H. B. , and Hattel, J. H. , 2008, “Thermal Modelling of Friction Stir Welding,” Scr. Mater., 58(5), pp. 332–337. [CrossRef]
Schmidt, H. , Hattel, J. , and Wert, J. , 2004, “An Analytical Model for the Heat Generation in Friction Stir Welding,” Model. Simul. Mater. Sci., 12(1), pp. 143–157. [CrossRef]
Amancio-Filho, S. T. , 2007, “Friction Riveting: Development and Analysis of a New Joining Technique for Polymer–Metal Multi-Materials Structures,” Ph.D. dissertation, Hamburg-Harburg University, Hamburg, Germany.
Chen, K. , Liu, X. , and Ni, J. , 2017, “Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel,” ASME J. Manuf. Sci. Eng., 139(8), p. 081016. [CrossRef]
Min, J. , Li, J. , Carlson, B. E. , Li, Y. , Quinn, J. , Lin, J. , and Wang, W. , 2015, “Friction Stir Blind Riveting for Aluminum Alloy Sheets,” J. Mater. Process. Technol., 215, pp. 20–29. [CrossRef]
Gao, D. , Ersoy, U. , Stevenson, R. , and Wang, P. C. , 2009, “A New One-Sided Joining Process for Aluminum Alloys: Friction Stir Blind Riveting,” ASME J. Manuf. Sci. Eng., 131(6), p. 061002. [CrossRef]
Lathabai, S. , Tyagi, V. , Ritchie, D. , Kearney, T. , and Finnin, B. , 2011, “Friction Stir Blind Riveting: A Novel Joining Process for Automotive Light Alloys,” SAE Paper No. 2011-01-0477.
Wang, W. , 2014, “Friction Stir Blind Riveting of CFRP and Metals,” Comprehensive Exam Report, University of Hawaii at Manoa, Honolulu, HI.
Amancio-Filho, S. T. , Sheikhi, S. , dos Santos, J. F. , and Bolfarini, C. , 2008, “Preliminary Study on the Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds in Aircraft Aluminum Alloys 2024-T351 and 6056-T4,” J. Mater. Process. Technol., 206(1–3), pp. 132–142. [CrossRef]
Amancio-Filho, S. T. , and dos Santos, J. F. , 2009, “Influence of Processing Parameters on Microstructure and Properties of a Polyetherimide Joined by Fricriveting: Investigation of Rotational Speed,” 67th Annual Technical Conference of the Society of Plastics Engineers (ANTEC), Chicago, IL, June 22–24, pp. 756–759.
Squire, L. , Lim, Y. C. , Miles, M. , and Feng, Z. , 2015, “Mechanical Properties of Dissimilar Metal Joints Composed of DP 980 Steel and AA 7075-T6,” Sci. Technol. Weld. Joining, 20(3), pp. 242–248. [CrossRef]
Min, J. , Li, J. , Li, Y. , Carlson, B. E. , and Lin, J. , 2016, “Affected Zones in an Aluminum Alloy Frictionally Penetrated by a Blind Rivet,” ASME J. Manuf. Sci. Eng., 138(5), pp. 501–506.
Yan, Y. , Zhang, D. T. , Qiu, C. , and Zhang, W. , 2010, “Dissimilar Friction Stir Welding Between 5052 Aluminum Alloy and AZ31 Magnesium Alloy,” Trans. Nonferrous Met. Soc. China, 20(Suppl. 2), pp. 619–623. [CrossRef]
Croom, B. , Wang, W. , Li, J. , and Li, X. , 2016, “Unveiling 3D Deformations in Polymer Composites by Coupled Micro X-Ray Computed Tomography and Volumetric Digital Image Correlation,” Exp. Mech., 56(6), pp. 999–1016. [CrossRef]
Amancio-Filho, S. T. , 2011, “Friction Riveting: Development and Analysis of a New Joining Technique for Polymer–Metal Multi-Material Structures,” Weld. World, 55(1–2), pp. 13–24. [CrossRef]
Rodrigues, C. F. , Blaga, L. A. , dos Santos, J. F. , Canto, L. B. , Hage, E., Jr. , and Amancio-Filho, S. T. , 2014, “Fricriveting of Aluminum 2024-T351 and Polycarbonate: Temperature Evolution, Microstructure and Mechanical Performance,” J. Mater. Process. Technol., 214(10), pp. 2029–2039. [CrossRef]
Wang, W. M. , Khan, H. A. , Li, J. , Miller, S. F. , and Zachary, T. A. , 2017, “Classification of Failure Modes in Friction Stir Blind Riveted Lap-Shear Joints With Dissimilar Materials,” ASME J. Manuf. Sci. Eng., 139(2), p. 021005. [CrossRef]
Min, J. , Li, Y. , Li, J. , Carlson, B. E. , and Lin, J. , 2014, “Mechanical Property of Al Alloy Joints by Friction Stir Blind Riveting,” Procedia Eng., 81, pp. 2036–2041. [CrossRef]
Amancio-Filho, S. T. , dos Santos, J. F. , and Ventzke, V. , 2008, “Determination of Fracture Mechanism Under Tensile Loading in Commercial Available Engineering Thermoplastic Material Joined by FricRiveting,” Fifth International Conference on Fracture of Polymer, Composites and Adhesives, Les Diablerets, Switzerland, Sept. 10–14.
Min, J. , Li, J. , Carlson, B. E. , Li, Y. , Quinn, J. , Lin, J. , and Wang, W. , 2015, “Friction Stir Blind Riveting for Joining Dissimilar Cast Mg AM60 and Al Alloy Sheets,” ASME J. Manuf. Sci. Eng., 137(5), p. 051022. [CrossRef]
Min, J. , Li, Y. , Li, J. , Carlson, B. E. , and Lin, J. , 2015, “Friction Stir Blind Riveting of Carbon Fiber-Reinforced Polymer Composite and Aluminum Alloy Sheets,” Int. J. Adv. Manuf. Technol., 76(5), pp. 1403–1410. [CrossRef]
Zhang, C. , Wang, X. , and Li, B. , 2011, “A Technological Study on Friction Stir Blind Rivet Jointing of AZ31B Magnesium Alloys and High-Strength DP600 Steel,” Adv. Mater. Res., 183–185, pp. 1616–1620. [CrossRef]
Miles, M. , Hong, S. T. , Woodward, C. , and Jeong, H. , 2013, “Spot Welding of Aluminum and Cast Iron by Friction Bit Joining,” Int. J. Precis. Eng. Manuf., 14(6), pp. 1003–1006. [CrossRef]
Amancio-Filho, S. T. , and dos Santos, J. F. , 2009, “Joining of Polymer–Metal Hybrid Structures: Recent Developments and Trends,” Polym. Eng. Sci., 49(8), pp. 1461–1476. [CrossRef]
Squires, L. , 2014, “Friction Bit Joining of Dissimilar Combinations of Advanced High-Strength Steel and Aluminum Alloys,” Ph.D. dissertation, Brigham Young University, Provo, UT. http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=5103&context=etd
Song, G. , Johannesson, B. , Hapugoda, S. , and St. John, D. , 2004, “Galvanic Corrosion of Magnesium Alloy AZ91D in Contact With an Aluminum Alloy, Steel and Zinc,” Corros. Sci., 46(4), pp. 955–977. [CrossRef]
Deshpande, K. B. , 2010, “Validated Numerical Modelling of Galvanic Corrosion for Couples: Magnesium Alloy (AE44)–Mild Steel and AE44–Aluminum Alloy (AA6063) in Brine Solution,” Corros. Sci., 52(10), pp. 3514–3522. [CrossRef]
Deshpande, K. B. , 2012, “Effect of Aluminum Spacer on Galvanic Corrosion Between Magnesium and Mild Steel Using Numerical Model and SVET Experiments,” Corros. Sci., 62, pp. 184–191. [CrossRef]
Feng, Z. , Frankel, G. S. , and Matzdorf, C. A. , 2013, “Quantification of Accelerated Corrosion Testing of Coated AA7075-T6,” J. Electrochem. Soc., 161(1), pp. C42–C49. [CrossRef]
Feng, Z. , and Frankel, G. S. , 2013, “Galvanic Test Panels for Accelerated Corrosion Testing of Coated Al Alloys—Part 2: Measurement of Galvanic Interaction,” Corrosion, 70(1), pp. 95–106. [CrossRef]
Li, S. , Khan, H. , Hiharaa, L. H. , and Li, J. , 2016, “Marine Atmospheric Corrosion of Al-Mg Joints by Friction Stir Blind Riveting,” Corros. Sci., 111, pp. 793–801. [CrossRef]
Lima, Y. C. , Squires, L. , Pan, T. Y. , Miles, M. , Song, G. L. , Wang, Y. , and Feng, Z. , 2015, “Study of Mechanical Joint Strength of Aluminum Alloy 7075-T6 and Dual Phase Steel 980 Welded by Friction Bit Joining and Weld-Bonding Under Corrosion Medium,” Mater. Des., 69, pp. 37–43. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of different joining processes: (a) solid riveting [9], (b) blind riveting [12], (c) self-piercing riveting [14], and (d) friction stir welding [24]

Grahic Jump Location
Fig. 2

Schematic illustration of FricRiveted process [28]: (a) fixturing of joining materials, (b) axial movement of the rotating rivet into polymeric partner(s), (c) increase of axial force and forging of the rivet, and (d) anchor formation of deformed rivet tip and consolidation of joint

Grahic Jump Location
Fig. 3

Schematic diagram of friction self-piercing riveting process: (a) rivet feed stage, (b) hot riveting stage, (c) friction stage, and (d) off stage [29]

Grahic Jump Location
Fig. 4

Schematic illustrations of FBJ process [35]: (a) lap joint before joining, (b) cutting step, (c) joining step, and (d) finished joint

Grahic Jump Location
Fig. 5

Two-sided friction stir riveting by extrusion process [36]: (a) plunged, (b) dwell, and (c) retraction

Grahic Jump Location
Fig. 6

Steps of the FSBR process: (a) contacting, (b) friction stir riveting (FSR), (c) blind riveting (BR), and (d) completion [43]

Grahic Jump Location
Fig. 7

Schematic of the SBR process [44]

Grahic Jump Location
Fig. 8

EBSD microstructure of the frictionally penetrated AA6111 specimen showing different microstructural zones along with their dimension [62]

Grahic Jump Location
Fig. 9

Schematic representation of typical microstructural zones found in FricRiveting joints: PHAZ, PTMAZ, MHAZ, and MTMAZ [65]

Grahic Jump Location
Fig. 10

Bond formation in different FSP: (a) mechanical interlocking in CFRP/Al joint due to FSBR [67], (b) interfacial bonding in Fe/Al joint due to FBJ [34], and (c) bond formation in F-SPR [29]

Grahic Jump Location
Fig. 11

Failure modes in FricRiveted joints [69]

Grahic Jump Location
Fig. 12

Calculated axial strain εzz at (a) 130 and (b) 260 N compression loads of CFRP composite after FSBR. Axial strain concentration on the rivet hole surface is marked with (*) [64].



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In