0
Review Article

A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect

[+] Author and Article Information
Brandt J. Ruszkiewicz

Mem. ASME
International Center for Automotive Research,
Clemson University,
Greenville, SC 29607
e-mail: brandtruszki@gmail.com

Tyler Grimm

Mem. ASME
Advanced Manufacturing and Innovation Center,
Penn State Erie, The Behrend College,
Erie, PA 16563
e-mail: grimmtyler95@gmail.com

Ihab Ragai

Mem. ASME
Burke Research and Economic
Development Center,
The Pennsylvania State University,
Erie, PA 16563
e-mail: ifr1@psu.edu

Laine Mears

Mem. ASME
International Center for Automotive Research,
Clemson University,
Greenville, SC 29607
e-mail: mears@clemson.edu

John T. Roth

Fellow ASME
Advanced Manufacturing and Innovation Center,
Penn State Erie, The Behrend College,
Erie, PA 16563
e-mail: jtr11@psu.edu

1Corresponding author.

Manuscript received January 20, 2017; final manuscript received May 5, 2017; published online September 13, 2017. Editor: Y. Lawrence Yao.

J. Manuf. Sci. Eng 139(11), 110801 (Sep 13, 2017) (15 pages) Paper No: MANU-17-1033; doi: 10.1115/1.4036716 History: Received January 20, 2017; Revised May 05, 2017

Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Jones, J. J. , and Mears, L. , 2011, “ Constant Current Density Compression Behavior of 304 Stainless Steel and Ti-6Al-4V During Electrically-Assisted Forming,” ASME Paper No. MSEC2011-50287.
Salandro, W. , Jones, J. , Bunget, C. , Mears, L. , and Roth, J. , 2014, Electrically Assisted Forming: Modeling and Control, Springer, Basel, Switzerland.
Jones, J. J. , Mears, L. , and Roth, J. T. , 2012, “ Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability,” ASME J. Manuf. Sci. Eng., 134(3), p. 034504. [CrossRef]
Bunget, C. , Salandro, W. , Mears, L. , and Roth, J. T. , 2010, “ Energy-Based Modeling of an Electrically-Assisted Forging Process,” 38th North American Manufacturing Research Conference (NAMRC), Kingston, ON, Canada, May 26–28, pp. 647–654.
Hong, S. , Jeong, Y. , Chowdhury, M. N. , Chun, D. , Kim, M. , and Han, H. N. , 2015, “ Feasibility of Electrically Assisted Progressive Forging of Aluminum 6061-T6 Alloy,” CIRP Ann. Manuf. Technol., 64(1), pp. 277–280. [CrossRef]
Perkins, T. A. , Kronenberger, T. J. , and Roth, J. T. , 2007, “ Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working,” ASME J. Manuf. Sci. Eng., 129(1), pp. 84–94. [CrossRef]
Li, X. , Wang, F. , Li, X. , Zhu, J. , and Tang, G. , 2016, “ Mg–3Al–1Zn Alloy Strips Processed by Electroplastic Differential Speed Rolling,” Mater. Sci. Technol., 33(2), pp. 215–219. [CrossRef]
Conrad, H. , 1989, “ A Study Into the Mechanism(s) for the Electroplastic Effect in Metals and Its Application to Metalworking, Processing and Fatigue,” U.S. Army Research Office, Durham, NC.
Tang, G. , Zhang, J. , Zheng, M. , Zhang, J. , Fang, W. , and Li, Q. , 2000, “ Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L,” Mater. Sci. Eng. A, 281(1), pp. 263–267. [CrossRef]
Tang, G. , Zhang, J. , Yan, Y. , Zhou, H. , and Fang, W. , 2003, “ The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire,” J. Mater. Process. Technol., 137(1), pp. 96–99. [CrossRef]
Kozlov, A. , Mordyuk, B. , and Chernyashevsky, A. , 1995, “ On the Additivity of Acoustoplastic and Electroplastic Effects,” Mater. Sci. Eng. A, 190(1), pp. 75–79. [CrossRef]
Egea, A. J. S. , Rojas, H. A. G. , Celentano, D. J. , and Peiró, J. J. , 2016, “ Mechanical and Metallurgical Changes on 308L Wires Drawn by Electropulses,” Mater. Des., 90, pp. 1159–1169. [CrossRef]
Zhang, J. , Tang, G. , Yan, Y. , and Fang, W. , 2002, “ Effect of Current Pulses on the Drawing Stress and Properties of Cr17Ni6Mn3 and 4J42 Alloys in the Cold-Drawing Process,” J. Mater. Process. Technol., 120(1–3), pp. 13–16. [CrossRef]
Ulutan, D. , Pleta, A. , and Mears, L. , 2015, “ Electrically-Assisted Machining of Titanium Alloy Ti-6Al-4V and Nickel-Based Alloy IN-738: An Investigation,” ASME Paper No. MSEC2015-9465.
Jones, E. , Jones, J. J. , and Mears, L. , 2013, “ Empirical Modeling of Direct Electric Current Effect on Machining Cutting Force,” ASME Paper No. MSEC2013-1229.
Egea, A. J. S. , Rojas, H. A. G. , Montaña, C. A. M. , and Echeverri, V. K. , 2015, “ Effect of Electroplastic Cutting on the Manufacturing Process and Surface Properties,” J. Mater. Process. Technol., 222, pp. 327–334. [CrossRef]
Hameed, S. , Rojas, H. A. G. , Egea, A. J. S. , and Alberro, A. N. , 2016, “ Electroplastic Cutting Influence on Power Consumption During Drilling Process,” Int. J. Adv. Manuf. Technol., 87(5–8), pp. 1835–1841. [CrossRef]
Zhang, D. , To, S. , Zhu, Y. H. , Wang, H. , and Tang, G. Y. , 2012, “ Static Electropulsing-Induced Microstructural Changes and Their Effect on the Ultra-Precision Machining of Cold-Rolled AZ91 Alloy,” Metall. Mater. Trans. A, 43(4), pp. 1341–1346. [CrossRef]
Ji, R. , Liu, Y. , Zhang, Y. , Dong, X. , Chen, Z. , and Cai, B. , 2011, “ Experimental Research on Machining Characteristics of SiC Ceramic With End Electric Discharge Milling,” J. Mech. Sci. Technol., 25(6), pp. 1535–1542. [CrossRef]
Ruszkiewicz, B. J. , and Mears, L. , 2016, “ Electrically Assisted Compression of Tungsten Carbide and Its Implications for Electrically Assisted Machining,” ASME Paper No. MSEC2016-8554.
Langer, J. , Hoffmann, M. J. , and Guillon, O. , 2009, “ Direct Comparison Between Hot Pressing and Electric Field-Assisted Sintering of Submicron Alumina,” Acta Mater., 57(18), pp. 5454–5465. [CrossRef]
Grasso, S. , Sakka, Y. , and Maizza, G. , 2009, “ Electric Current Activated/Assisted Sintering (ECAS): A Review of Patents 1906–2008,” Sci. Technol. Adv. Mater., 10(5), p. 053001. [CrossRef] [PubMed]
Munir, Z. A. , Quach, D. V. , and Ohyanagi, M. , 2011, “ Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc., 94(1), pp. 1–19. [CrossRef]
Skovron, J. , Ruszkiewicz, B. J. , Mears, L. , and Abke, T. , 2016, “ Effect of Electrical Augmentation on the Joining of Al6063-T5 Using Flow Drill Screws,” ASME Paper No. MSEC2016-8578.
Ferrando, W. A. , 2008, “ The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals,” Naval Surface Warfare Center, Bethesda, MD, Report No. NSWCCD-61-TR-2008/13. http://www.dtic.mil/dtic/tr/fulltext/u2/a487963.pdf
Liu, X. , Lan, S. , and Ni, J. , 2015, “ Electrically Assisted Friction Stir Welding for Joining Al 6061 to TRIP 780 Steel,” J. Mater. Process. Technol., 219, pp. 112–123. [CrossRef]
Santos, T. G. , Miranda, R. , and Vilaca, P. , 2014, “ Friction Stir Welding Assisted by Electrical Joule Effect,” J. Mater. Process. Technol., 214(10), pp. 2127–2133. [CrossRef]
Santos, T. G. , Lopes, N. , Machado, M. , Vilaca, P. , and Miranda, R. , 2015, “ Surface Reinforcement of AA5083-H111 by Friction Stir Processing Assisted by Electrical Current,” J. Mater. Process. Technol., 216, pp. 375–380. [CrossRef]
Stolyarov, V. , 2009, “ Deformability and Nanostructuring of TiNi Shape-Memory Alloys During Electroplastic Rolling,” Mater. Sci. Eng. A, 503(1), pp. 18–20. [CrossRef]
Ng, M. , Li, L. , Fan, Z. , Gao, R. X. , Smith, E. F. , Ehmann, K. F. , and Cao, J. , 2015, “ Joining Sheet Metals by Electrically-Assisted Roll Bonding,” CIRP Ann. Manuf. Technol., 64(1), pp. 273–276. [CrossRef]
Jeswiet, J. , Micari, F. , Hirt, G. , Bramley, A. , Duflou, J. , and Allwood, J. , 2005, “ Asymmetric Single Point Incremental Forming of Sheet Metal,” CIRP Ann. Manuf. Technol., 54(2), pp. 88–114. [CrossRef]
Neveux, T. , Ruszkiewicz, B. J. , Roth, J. T. , and Ragai, I. , 2016, “ Electrically Assisted Global Springback Elimination After Single Point Incremental Forming,” ASME Paper No. MSEC2016-8813.
Ruszkiewicz, B. J. , Roth, J. T. , and Johnson, D. H. , 2015, “ Locally Applied Direct Electric Current's Effect on Springback of 2024-T3 Aluminum After Single Point Incremental Forming,” ASME Paper No. MSEC2015-9429.
Khal, A. , Ruszkiewicz, B. J. , and Mears, L. , 2016, “ Springback Evaluation of 304 Stainless Steel in an Electrically Assisted Air Bending Operation,” ASME Paper No. MSEC2016-8736.
Grimm, T. , Roth, J. T. , and Ragai, I. , 2016, “ Electrically Assisted Global Springback Elimination in AMS-T-9046 Titanium After Single Point Incremental Forming,” ASME Paper No. MSEC2016-8811.
Roth, J. , 2011, “ Single Point Incremental Forming of Metallic Materials Using Applied Direct Current,” Penn State Research Foundation, University Park, PA, U.S. Patent No. 8,021,501. https://www.google.ch/patents/US8021501
Fan, G. , Sun, F. , Meng, X. , Gao, L. , and Tong, G. , 2010, “ Electric Hot Incremental Forming of Ti-6Al-4V Titanium Sheet,” Int. J. Adv. Manuf. Technol., 49(9–12), pp. 941–947. [CrossRef]
Fan, G. , Gao, L. , Hussain, G. , and Wu, Z. , 2008, “ Electric Hot Incremental Forming: A Novel Technique,” Int. J. Mach. Tools Manuf., 48(15), pp. 1688–1692. [CrossRef]
Shi, X. , Gao, L. , Khalatbari, H. , Xu, Y. , Wang, H. , and Jin, L. , 2013, “ Electric Hot Incremental Forming of Low Carbon Steel Sheet: Accuracy Improvement,” Int. J. Adv. Manuf. Technol., 68(1–4), pp. 241–247. [CrossRef]
Bao, W. , Chu, X. , Lin, S. , and Gao, J. , 2015, “ Experimental Investigation on Formability and Microstructure of AZ31B Alloy in Electropulse-Assisted Incremental Forming,” Mater. Des., 87, pp. 632–639. [CrossRef]
Honarpisheh, M. , Abdolhoseini, M. , and Amini, S. , 2016, “ Experimental and Numerical Investigation of the Hot Incremental Forming of Ti-6Al-4V Sheet Using Electrical Current,” Int. J. Adv. Manuf. Technol., 83(9–12), pp. 2027–2037. [CrossRef]
Xu, D. , Lu, B. , Cao, T. , Zhang, H. , Chen, J. , Long, H. , and Cao, J. , 2016, “ Enhancement of Process Capabilities in Electrically-Assisted Double Sided Incremental Forming,” Mater. Des., 92, pp. 268–280. [CrossRef]
Liu, R. , Lu, B. , Xu, D. , Chen, J. , Chen, F. , Ou, H. , and Long, H. , 2016, “ Development of Novel Tools for Electricity-Assisted Incremental Sheet Forming of Titanium Alloy,” Int. J. Adv. Manuf. Technol., 85(5), pp. 1137–1144. [CrossRef]
Xie, H. , Dong, X. , Peng, F. , Wang, Q. , Liu, K. , Wang, X. , and Chen, F. , 2016, “ Investigation on the Electrically-Assisted Stress Relaxation of AZ31B Magnesium Alloy Sheet,” J. Mater. Process. Technol., 227, pp. 88–95. [CrossRef]
Adams, D. , and Jeswiet, J. , 2014, “ Single-Point Incremental Forming of 6061-T6 Using Electrically Assisted Forming Methods,” Proc. Inst. Mech. Eng., Part B, 228(7), pp. 757–764. [CrossRef]
Valoppi, B. , Egea, A. J. S. , Zhang, Z. , Rojas, H. A. G. , Ghiotti, A. , Bruschi, S. , and Cao, J. , 2016, “ A Hybrid Mixed Double-Sided Incremental Forming Method for Forming Ti6Al4V Alloy,” CIRP Ann. Manuf. Technol., 65(1), pp. 309–312. [CrossRef]
Nguyen-Tran, H. , Oh, H. , Hong, S. , Han, H. N. , Cao, J. , Ahn, S. , and Chun, D. , 2015, “ A Review of Electrically-Assisted Manufacturing,” Int. J. Precis. Eng. Manuf. Green Technol., 2(4), pp. 365–376. [CrossRef]
Guan, L. , Tang, G. , and Chu, P. K. , 2010, “ Recent Advances and Challenges in Electroplastic Manufacturing Processing of Metals,” J. Mater. Res., 25(7), pp. 1215–1224. [CrossRef]
Machlin, E. , 1959, “ Applied Voltage and the Plastic Properties of ‘Brittle’ Rock Salt,” J. Appl. Phys., 30(7), pp. 1109–1110. [CrossRef]
Andrawes, J. S. , Kronenberger, T. J. , Perkins, T. A. , Roth, J. T. , and Warley, R. L. , 2007, “ Effects of DC Current on the Mechanical Behavior of AlMg1SiCu,” Mater. Manuf. Process., 22(1), pp. 91–101. [CrossRef]
Wang, X. , Xu, J. , Jiang, Z. , Zhu, W. , Shan, D. , Guo, B. , and Cao, J. , 2016, “ Size Effects on Flow Stress Behavior During Electrically-Assisted Micro-Tension in a Magnesium Alloy AZ31,” Mater. Sci. Eng. A, 659, pp. 215–224. [CrossRef]
Zheng, Q. , Shimizu, T. , Shiratori, T. , and Yang, M. , 2014, “ Tensile Properties and Constitutive Model of Ultrathin Pure Titanium Foils at Elevated Temperatures in Microforming Assisted by Resistance Heating Method,” Mater. Des., 63, pp. 389–397. [CrossRef]
Kim, M. , Vinh, N. T. , Yu, H. , Hong, S. , Lee, H. , Kim, M. , Han, H. N. , and Roth, J. T. , 2014, “ Effect of Electric Current Density on the Mechanical Property of Advanced High Strength Steels Under Quasi-Static Tensile Loads,” Int. J. Precis. Eng. Manuf., 15(6), pp. 1207–1213. [CrossRef]
Fan, R. , Magargee, J. , Hu, P. , and Cao, J. , 2013, “ Influence of Grain Size and Grain Boundaries on the Thermal and Mechanical Behavior of 70/30 Brass Under Electrically-Assisted Deformation,” Mater. Sci. Eng. A, 574, pp. 218–225. [CrossRef]
Siopis, M. S. , Kinsey, B. L. , Kota, N. , and Ozdoganlar, O. B. , 2011, “ Effect of Severe Prior Deformation on Electrical-Assisted Compression of Copper Specimens,” ASME J. Manuf. Sci. Eng., 133(6), p. 064502. [CrossRef]
Magargee, J. , Fan, R. , and Cao, J. , 2013, “ Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation,” ASME J. Manuf. Sci. Eng., 135(6), p. 061022. [CrossRef]
Pleta, A. D. , Krugh, M. C. , Nikhare, C. , and Roth, J. T. , 2103, “ An Investigation of Anisotropic Behavior on 5083 Aluminum Alloy Using Electric Current,” ASME Paper No. MSEC2013-1244.
Jones, J. , 2012, “ Flow Behavior Modeling and Process Control of Electrically-Assisted Forming (EAF) for Sheet Metals in Uniaxial Tension,” Ph.D. dissertation, Clemson University, Clemson, SC. http://tigerprints.clemson.edu/all_dissertations/1069/
Xu, Q. , Guan, L. , Jiang, Y. , Tang, G. , and Wang, S. , 2010, “ Improved Plasticity of Mg–Al–Zn Alloy by Electropulsing Tension,” Mater. Lett., 64(9), pp. 1085–1087. [CrossRef]
Roth, J. , Loker, I. , Mauck, D. , Warner, M. , Golovashchenko, S. , and Krause, A. , 2008, “ Enhanced Formability of 5754 Aluminum Sheet Metal Using Electric Pulsing,” 36th North American Manufacturing Research Conference (NAMRC), Monterrey, Mexico, May 20–23, pp. 405–412.
Yang, D. , and Conrad, H. , 2001, “ Exploratory Study Into the Effects of an Electric Field and of High Current Density Electropulsing on the Plastic Deformation of TiAl,” Intermetallics, 9(10), pp. 943–947. [CrossRef]
Cao, W. , Lu, X. , and Conrad, H. , 1996, “ Whisker Formation and the Mechanism of Superplastic Deformation,” Acta Mater., 44(2), pp. 697–706. [CrossRef]
Liu, S. , Chen, C. , Liu, P. , and Chou, T. , 2004, “ Tin Whisker Growth Driven by Electrical Currents,” J. Appl. Phys., 95(12), pp. 7742–7747. [CrossRef]
Fukuda, Y. , Osterman, M. , and Pecht, M. , 2007, “ The Impact of Electrical Current, Mechanical Bending, and Thermal Annealing on Tin Whisker Growth,” Microelectron. Reliab., 47(1), pp. 88–92. [CrossRef]
Ross, C. D. , Irvin, D. B. , and Roth, J. T. , 2007, “ Manufacturing Aspects Relating to the Effects of Direct Current on the Tensile Properties of Metals,” ASME J. Eng. Mater. Technol., 129(2), pp. 342–347. [CrossRef]
Ross, C. D. , Kronenberger, T. J. , and Roth, J. T. , 2009, “ Effect of DC on the Formability of Ti–6Al–4V,” ASME J. Eng. Mater. Technol., 131(3), p. 031004. [CrossRef]
Bunget, C. J. , Salandro, W. A. , and Mears, L. , 2012, “ Sensitivities When Modeling Electrically-Assisted Forming,” ASME Paper No. MSEC2012-7334.
Troitskii, O. , Spitsyn, N. , Sokolov, N. , and Ryzhkov, V. , 1978, “Electroplastic Drawing of Steel, Copper, and Tungsten,” Dokl. Akad. Nauk., 243, p. 330.
Salandro, W. , 2012, “ Thermo-Mechanical Modeling of the Electrically-Assisted Manufacturing (EAM) Technique During Open Die Forging,” Ph.D. dissertation, Clemson University, Clemson, SC. http://tigerprints.clemson.edu/all_dissertations/968/
Egea, A. J. S. , Rojas, H. A. G. , Celentano, D. J. , Travieso-Rodríguez, J. A. , and Fuentes, J. L. , 2014, “ Electroplasticity-Assisted Bottom Bending Process,” J. Mater. Process. Technol., 214(11), pp. 2261–2267. [CrossRef]
Li, X. , Zhou, Q. , Zhao, S. , and Chen, J. , 2014, “ Effect of Pulse Current on Bending Behavior of Ti6Al4V Alloy,” Procedia Eng., 81, pp. 1799–1804. [CrossRef]
Jordan, A. , and Kinsey, B. L. , 2015, “ Investigation of Thermal and Mechanical Effects During Electrically-Assisted Microbending,” J. Mater. Process. Technol., 221, pp. 1–12. [CrossRef]
Ruszkiewicz, B. J. , Scriva, C. , Reese, Z. C. , Nikhare, C. P. , Roth, J. T. , and Ragai, I. , 2015, “ Direct Electric Current Spot Treatment's Effect on Springback of 90 Degree Bent 2024-T3 Aluminum,” ASME Paper No. MSEC2015-9433.
Salandro, W. A. , Bunget, C. , and Mears, L. , 2010, “ Modeling and Quantification of the Electroplastic Effect When Bending Stainless Steel Sheet Metal,” ASME Paper No. MSEC2010-34043.
Green, C. R. , McNeal, T. A. , and Roth, J. T. , 2009, “ Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM),” 37th North American Manufacturing Research Conference (NAMRC), Greenville, SC, May 19–22, pp. 403–410.
Klypin, A. , 1979, “ Structure and Properties of Alloys Under the Influence of Electric Field,” Met. Sci. Heat Treat., 21(3), pp. 177–181. [CrossRef]
Kishkin, S. , and Klypin, A. , 1974, “ Effects of Electric and Magnetic Fields on Creep in Metals and Alloys,” Sov. Phys. Dokl., 18, p. 502.
Kishkin, S. , and Klypin, A. , 1973, “ Effects of Electrical and Magnetic Action on the Creep of Metals and Alloys,” Dokl. Akad. Nauk SSSR, 212(2), pp. 325–327.
Pan, R. , Wang, Q. , Sun, D. , and He, P. , 2015, “ Effects of Electric Field on Interfacial Microstructure and Shear Strength of Diffusion Bonded α-Al2O3/Ti Joints,” J. Eur. Ceram. Soc., 35(1), pp. 219–226. [CrossRef]
Chen, S. , Chen, C. , and Liu, W. , 1998, “ Electric Current Effects Upon the Sn/Cu and Sn/Ni Interfacial Reactions,” J. Electron. Mater., 27(11), pp. 1193–1199. [CrossRef]
San Martin, A. , Nghiep, D. , Paufler, P. , Kleinstück, K. , Krämer, U. , and Quyen, N. , 1980, “ The Electroplastic Effect in V3Si,” Scr. Metall., 14(10), pp. 1041–1045. [CrossRef]
Conrad, H. , Karam, N. , Mannan, S. , and Sprecher, A. , 1988, “ Effect of Electric Current Pulses on the Recrystallization Kinetics of Copper,” Scr. Metall., 22(2), pp. 235–238. [CrossRef]
Conrad, H. , Karam, N. , and Mannan, S. , 1983, “ Effect of Electric Current Pulses on the Recrystallization of Copper,” Scr. Metall., 17(3), pp. 411–416. [CrossRef]
Conrad, H. , Karam, N. , and Mannan, S. , 1984, “ Effect of Prior Cold Work on the Influence of Electric Current Pulses on the Recrystallization of Copper,” Scr. Metall., 18(3), pp. 275–280. [CrossRef]
Conrad, H. , Guo, Z. , and Sprecher, A. , 1989, “ Effect of an Electric Field on the Recovery and Recrystallization of Al and Cu,” Scr. Metall., 23(6), pp. 821–823. [CrossRef]
Heigel, J. C. , Andrawes, J. S. , Roth, J. T. , Hoque, M. E. , and Ford, R. M. , 2005, “ Viability of Electrically Treating 6061 T651 Aluminum for Use in Manufacturing Processes,” 33rd North American Manufacturing Research Conference (NAMRC), New York, May 23–27, pp. 145–152.
Murav'ev, V. , Yakimov, A. , and Chernyshev, A. , 2003, “ Effect of Deformation, Welding, and Electrocontact Heating on the Properties of Titanium Alloy VT20 in Pressed and Welded Structures,” Met. Sci. Heat Treat., 45(11), pp. 419–422. [CrossRef]
Onodera, Y. , Maruyama, J. I. , and Hirano, K. I. , 1977, “ Retardation of the Precipitation Reaction by Dc Stress in an Al-12.5 wt% Zn Alloy,” J. Mater. Sci., 12(6), pp. 1109–1114. [CrossRef]
Onodera, Y. , and Hirano, K. , 1984, “ The Effect of AC Frequency on Precipitation in Al-5.6 at% Zn,” J. Mater. Sci., 19(12), pp. 3935–3939. [CrossRef]
Conrad, H. , 2000, “ Effects of Electric Current on Solid State Phase Transformations in Metals,” Mater. Sci. Eng. A, 287(2), pp. 227–237. [CrossRef]
Mizubayashi, H. , and Okuda, S. , 1989, “ Structural Relaxation Induced by Passing Electric Current in Amorphous Cu50 Ti50 at Low Temperatures,” Phys. Rev. B, 40(11), pp. 8057–8060. [CrossRef]
Takemoto, R. , Nagata, M. , and Mizubayashi, H. , 1996, “ Effects of Passing Electric Current on the Elastic Property of Amorphous Cu50 Zr50 and Cu50 Ti50,” Acta Mater., 44(7), pp. 2787–2795. [CrossRef]
Takemoto, R. , and Mizubayashi, H. , 1995, “ Effects of Passing Electric Current on Structural Relaxation, Crystallization and Elastic Property in Amorphous Cu50 Ti50,” Acta Metall. Mater., 43(4), pp. 1495–1504. [CrossRef]
Lai, Z. , Conrad, H. , Chao, Y. , Wang, S. , and Sun, J. , 1989, “ Effect of Electropulsing on the Microstructure and Properties of Iron-Based Amorphous Alloys,” Scr. Metall., 23(3), pp. 305–310. [CrossRef]
Lai, Z. , Chao, Y. , Conrad, H. , and Chu, K. , 1995, “ Hyperfine Structure Changes in Iron-Base Amorphous Alloys Produced by High Current Density Electropulsing,” J. Mater. Res., 10(4), pp. 900–906. [CrossRef]
Teng, G. , Chao, Y. , Dong, L. , Geng, Y. , and Lai, Z. , 1996, “ Features of Nanocrystallization of Metallic Glass Fe78B13Si9 Induced by High-Current-Density Electropulsing,” Jpn. J. Appl. Phys., 35(10R), p. 5320. [CrossRef]
Teng, G. , Chao, Y. , Lai, Z. , and Dong, L. , 1996, “ Microstructural Study of the Low‐Temperature Nanocrystallization of Amorphous Fe78B13Si9,” Phys. Status Solidi (a), 156(2), pp. 265–276. [CrossRef]
Shine, M. , and Herd, S. , 1972, “ Effect of Direct Current on Precipitation in Quenched Al + 4% Cu Thin Films,” Appl. Phys. Lett., 20(6), pp. 217–219. [CrossRef]
Zhou, Y. , Guo, J. , Zhang, W. , and He, G. , 2002, “ Influence of Electropulsing on Nucleation During Phase Transformation,” J. Mater. Res., 17(12), pp. 3012–3014. [CrossRef]
Kim, M. , Lee, K. , Oh, K. H. , Choi, I. , Yu, H. , Hong, S. , and Han, H. N. , 2014, “ Electric Current-Induced Annealing During Uniaxial Tension of Aluminum Alloy,” Scr. Mater., 75, pp. 58–61. [CrossRef]
Andrawes, J. S. , Heigel, J. C. , Roth, J. T. , and Warley, R. L. , 2004, “ Effects of DC Current on the Stress-Strain Curve and Hardness of 6061 T6511 Aluminum,” ASME Paper No. IMECE2004-61829.
Xu, Z. S. , and Chen, Y. X. , 1988, “ Effect of Electric Current on the Recrystallization Behavior of Cold Worked α-Ti,” Scr. Metall., 22(2), pp. 187–190. [CrossRef]
Silveira, V. , Ribeiro, J. , Soares, G. , and Mannheimer, W. , 1984, “ An Effect of the Passage of Electric Current During Heat Treatment on the Hydrogen Embrittlement of Steel,” Scr. Metall., 18(2), pp. 131–132. [CrossRef]
Wang, X. L. , Dai, W. B. , Lu, Y. , He, S. Y. , and Zhao, X. Β. , 2011, “ β′ Phase Precipitation in a Cold Rolled Cu-Zn Alloy Under Electric Current Pulses,” Adv. Mater. Res., 197–198, pp. 692–695.
Jeong, H. , Kim, M. , Park, J. , Yim, C. D. , Kim, J. J. , Kwon, O. D. , Madakashira, P. P. , and Han, H. N. , 2017, “ Effect of Pulsed Electric Current on Dissolution of Mg17Al12 Phases in as-Extruded AZ91 Magnesium Alloy,” Mater. Sci. Eng. A, 684, pp. 668–676. [CrossRef]
Kuang, J. , Du, X. , Li, X. , Yang, Y. , Luo, A. A. , and Tang, G. , 2016, “ Athermal Influence of Pulsed Electric Current on the Twinning Behavior of Mg–3Al–1Zn Alloy During Rolling,” Scr. Mater., 114, pp. 151–155. [CrossRef]
Troitskii, O. , 1969, “ Electromechanical Effect in Metals,” ZhETF Pisma. Red., 10, pp. 18–22.
Conrad, H. , 2000, “ Electroplasticity in Metals and Ceramics,” Mater. Sci. Eng. A, 287(2), pp. 276–287. [CrossRef]
Sprecher, A. , Mannan, S. , and Conrad, H. , 1986, “ Overview No. 49: On the Mechanisms for the Electroplastic Effect in Metals,” Acta Metall., 34(7), pp. 1145–1162. [CrossRef]
Spitsyn, V. , Troitskii, O. , Gusev, E. , and Kurdiukov, V. , 1974, “Electroplastic Deformation of Stainless (18/9) Steel,” Izv. Akad.Nauk SSSR [Khim], 2, p. 123.
Troitskii, O. , 1977, “ Effect of the Electron State of a Metal on Its Mechanical Properties and the Phenomenon of Electroplasticity,” Strength Mater., 9(1), pp. 35–45. [CrossRef]
Troitskii, O. , and Likhtman, V. , 1963, “ The Anisotropy of the Action of Electron and Radiation on the Deformation of Zinc Single Crystal in the Brittle State,” Dokl. Akad. Nauk, 148, pp. 332–334.
Nabarro, F. R. , 1967, Theory of Crystal Dislocations, Dover Publications, Mineola, NY.
Spitsyn, V. , and Troitskii, O. , “ Simulation of the Thermal and Pinch Effects of Pulsed Current on the Plastic Deformation of a Metal,” Sov. Phys. Dokl., 20, p. 132.
Okazaki, K. , Kagawa, M. , and Conrad, H. , 1980, “ An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titanium,” Mater. Sci. Eng., 45(2), pp. 109–116. [CrossRef]
Magargee, J. , Morestin, F. , and Cao, J. , 2013, “ Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation,” ASME J. Eng. Mater. Technol., 135(4), p. 041003. [CrossRef]
Kronenberger, T. J. , Johnson, D. H. , and Roth, J. T. , 2009, “ Coupled Multifield Finite Element Analysis Model of Upsetting Under an Applied Direct Current,” ASME J. Manuf. Sci. Eng., 131(3), p. 031003. [CrossRef]
Khalilollahi, A. , Johnson, D. H. , and Roth, J. T. , 2009, “ A Comparative Multifield FEA and Experimental Study on the Enhanced Manufacturability of 6061-T6511 Aluminum Using DC Current,” ASME J. Manuf. Sci. Eng., 131(6), p. 064503. [CrossRef]
Hariharan, K. , Lee, M. , Kim, M. , Han, H. N. , Kim, D. , and Choi, S. , 2015, “ Decoupling Thermal and Electrical Effect in an Electrically Assisted Uniaxial Tensile Test Using Finite Element Analysis,” Metall. Mater. Trans. A, 46(7), pp. 3043–3051. [CrossRef]
Timsit, R. , 1981, “ Remarks on Recent Experimental Observations of the Electroplastic Effect,” Scr. Metall., 15(4), pp. 461–464. [CrossRef]
Molotskii, M. , and Fleurov, V. , 1995, “ Magnetic Effects in Electroplasticity of Metals,” Phys. Rev. B, 52(22), p. 15829. [CrossRef]
Krokhin, A. , Gumen, L. , and Galligan, J. , 1998, “ Tilt Effect in the Electron Drag of Dislocations in Metals,” Philos. Mag. A, 77(2), pp. 497–506. [CrossRef]
Golovin, Y. I. , 2004, “ Magnetoplastic Effects in Solids,” Phys. Solid State, 46(5), pp. 789–824. [CrossRef]
Jiang, T. , Peng, L. , Yi, P. , and Lai, X. , 2016, “ Analysis of the Electric and Thermal Effects on Mechanical Behavior of SS304 Subjected to Electrically Assisted Forming Process,” ASME J. Manuf. Sci. Eng., 138(6), p. 061004. [CrossRef]
Siopis, M. S. , and Kinsey, B. L. , 2010, “ Experimental Investigation of Grain and Specimen Size Effects During Electrical-Assisted Forming,” ASME J. Manuf. Sci. Eng., 132(2), p. 021004. [CrossRef]
Salandro, W. A. , Bunget, C. , and Mears, L. , 2012, “ Modeling the Electroplastic Effect During Electrically-Assisted Forming of 304 Stainless Steel,” ASME Paper No. MSEC2012-7241.
Ruszkiewicz, B. , and Mears, L. , 2016, “ Temperature Controlled Forming of 7075-T6 Aluminum Using Linearly Decaying Direct Electric Current,” ASME J. Manuf. Sci. Eng., 138(9), p. 091009. [CrossRef]
Lee, J. , Kim, S. , Lee, M. , Song, J. H. , Choi, S. , Han, H. N. , and Kim, D. , 2016, “ Experimental and Numerical Study on the Deformation Mechanism in AZ31B mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests,” Metall. Mater. Trans. A, 47(6), pp. 2783–2794. [CrossRef]
Goldman, P. , Motowidlo, L. , and Galligan, J. , 1981, “ The Absence of an Electroplastic Effect in Lead at 4.2 K,” Scr. Metall., 15(4), pp. 353–356. [CrossRef]
Wang, X. , Xu, J. , Shan, D. , Guo, B. , and Cao, J. , 2016, “ Modeling of Thermal and Mechanical Behavior of a Magnesium Alloy AZ31 During Electrically-Assisted Micro-Tension,” Int. J. Plast., 85, pp. 230–257. [CrossRef]
Kinsey, B. , Cullen, G. , Jordan, A. , and Mates, S. , 2013, “ Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti–6Al–4V,” CIRP Ann. Manuf. Technol., 62(1), pp. 279–282. [CrossRef]
Kang, W. , Beniam, I. , and Qidwai, S. M. , 2016, “ In Situ Electron Microscopy Studies of Electromechanical Behavior in Metals at the Nanoscale Using a Novel Microdevice-Based System,” Rev. Sci. Instrum., 87(9), p. 095001. [CrossRef] [PubMed]
Molotskii, M. I. , 2000, “ Theoretical Basis for Electro-and Magnetoplasticity,” Mater. Sci. Eng. A, 287(2), pp. 248–258. [CrossRef]
Kim, S. , Kim, S. , Yoo, D. , Lee, J. , Rhyim, Y. , and Kim, D. , 2016, “ Evaluation of the Athermal Effect of Electric Pulsing on the Recovery Behavior of Magnesium Alloy,” Metall. Mater. Trans. A, 47(12), pp. 6368–6373. [CrossRef]
Niaki, F. A. , Michel, M. , and Mears, L. , 2016, “ State of Health Monitoring in Machining: Extended Kalman Filter for Tool Wear Assessment in Turning of IN718 Hard-to-Machine Alloy,” J. Manuf. Process., 24(2), pp. 361–369. [CrossRef]
Niaki, F. A. , Feng, L. , Ulutan, D. , and Mears, L. , 2016, “ A Wavelet-Based Data-Driven Modelling for Tool Wear Assessment of Difficult to Machine Materials,” Int. J. Mechatronics Manuf. Syst., 9(2), pp. 97–121. https://doi.org/10.1504/IJMMS.2016.076168

Figures

Grahic Jump Location
Fig. 1

Uniaxial tension behavior in electrically assisted tension of commercially pure titanium [116]

Grahic Jump Location
Fig. 2

Pulsed current tension on 5754 aluminum [60]

Grahic Jump Location
Fig. 3

Brittle to ductile transformation in electrically assisted impression die forging [3]

Grahic Jump Location
Fig. 4

CCD versus nonconstant current density compression of 304 stainless steel [1]

Grahic Jump Location
Fig. 5

Current density's effect on energy requirement for open die forging of various metals [6]

Grahic Jump Location
Fig. 6

Elimination of Springback in 6111 Aluminum using postforming pulsing [75]

Grahic Jump Location
Fig. 7

Electrically assisted compression versus isothermal compression for titanium [65]

Grahic Jump Location
Fig. 8

Heated tension of 6061-T6511 versus annealed and electrically pulsed specimens [86]

Grahic Jump Location
Fig. 10

Redrawn flow stress prediction versus experiment for 45 A/mm2, note the inability to predict the large flow stress reduction [117]

Grahic Jump Location
Fig. 9

Temperature prediction for two current densities [117]

Grahic Jump Location
Fig. 11

Energy balance diagram for electrically assisted forging [74]

Grahic Jump Location
Fig. 12

Temperature prediction versus actual test: (a) without an EEC and (b) with proper EEC value [126]

Grahic Jump Location
Fig. 13

Model versus experiment for electrically assisted compression of 304 stainless [74]

Grahic Jump Location
Fig. 14

Nodal setup for explicit energy solution to calculate temperature [58] (Reprinted with permission from © 2012 Joshua Jones.)

Grahic Jump Location
Fig. 15

Temperature prediction using an energy balance for electrically assisted tension for stationary and deformation testing [58] (Reprinted with permission from © 2012 Joshua Jones.)

Grahic Jump Location
Fig. 16

Flow stress prediction using modified power law and energy balance [58] (Reprinted with permission from © 2012 Joshua Jones.)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In