Research Papers

Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys

[+] Author and Article Information
Gustavo Tapia

Industrial and Systems Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: gtapia@tamu.edu

Luke Johnson

Materials Science and Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: lukejohnson@tamu.edu

Brian Franco, Kubra Karayagiz, Ji Ma, Raymundo Arroyave, Ibrahim Karaman

Materials Science and Engineering Department,
Texas A&M University,
College Station, TX 77843

Alaa Elwany

Industrial and Systems Engineering Department,
Texas A&M University,
College Station, TX 77843
e-mail: elwany@tamu.edu

1Corresponding author.

Manuscript received August 4, 2016; final manuscript received January 17, 2017; published online March 6, 2017. Assoc. Editor: Donggang Yao.

J. Manuf. Sci. Eng 139(7), 071002 (Mar 06, 2017) (13 pages) Paper No: MANU-16-1417; doi: 10.1115/1.4035898 History: Received August 04, 2016; Revised January 17, 2017

Uncertainty quantification (UQ) is an emerging field that focuses on characterizing, quantifying, and potentially reducing, the uncertainties associated with computer simulation models used in a wide range of applications. Although it has been successfully applied to computer simulation models in areas such as structural engineering, climate forecasting, and medical sciences, this powerful research area is still lagging behind in materials simulation models. These are broadly defined as physics-based predictive models developed to predict material behavior, i.e., processing-microstructure-property relations and have recently received considerable interest with the advent of emerging concepts such as Integrated Computational Materials Engineering (ICME). The need of effective tools for quantifying the uncertainties associated with materials simulation models has been identified as a high priority research area in most recent roadmapping efforts in the field. In this paper, we present one of the first efforts in conducting systematic UQ of a physics-based materials simulation model used for predicting the evolution of precipitates in advanced nickel–titanium shape-memory alloys (SMAs) subject to heat treatment. Specifically, a Bayesian calibration approach is used to conduct calibration of the precipitation model using a synthesis of experimental and computer simulation data. We focus on constructing a Gaussian process-based surrogate modeling approach for achieving this task, and then benchmark the predictive accuracy of the calibrated model with that of the model calibrated using traditional Markov chain Monte Carlo (MCMC) methods.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Trucano, T. G. , 1998, “ Prediction and Uncertainty in Computational Modeling of Complex Phenomena: A Whitepaper,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND98-2776.
O'Hagan, A. , 2006, “ Bayesian Analysis of Computer Code Outputs: A Tutorial,” Reliab. Eng. Syst. Saf., 91(10), pp. 1290–1300. [CrossRef]
Murphy, J. M. , Sexton, D. M. , Barnett, D. N. , Jones, G. S. , Webb, M. J. , Collins, M. , and Stainforth, D. A. , 2004, “ Quantification of Modelling Uncertainties in a Large Ensemble of Climate Change Simulations,” Nature, 430(7001), pp. 768–772. [CrossRef] [PubMed]
Van Oijen, M. , and Thomson, A. , 2011, “ Toward Bayesian Uncertainty Quantification for Forestry Models Used in the United Kingdom Greenhouse Gas Inventory for Land Use, Land Use Change, and Forestry,” Greenhouse Gas Inventories: Dealing With Uncertainty, Springer, Dordrecht, The Netherlands, pp. 55–67.
Furnstahl, R. , Phillips, D. , and Wesolowski, S. , 2015, “ A Recipe for EFT Uncertainty Quantification in Nuclear Physics,” J. Phys. G, 42(3), p. 034028. [CrossRef]
Lin, G. , Engel, D. W. , and Eslinger, P. W. , 2012, “ Survey and Evaluate Uncertainty Quantification Methodologies,” Pacific Northwest National Laboratory, Richland, WA, Report No. PNNL-20914.
Smith, R. C. , 2013, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, Philadelphia, PA.
Hawkins-Daarud, A. , Prudhomme, S. , van der Zee, K. G. , and Oden, J. T. , 2013, “ Bayesian Calibration, Validation, and Uncertainty Quantification of Diffuse Interface Models of Tumor Growth,” J. Math. Biol., 67(6–7), pp. 1457–1485. [CrossRef] [PubMed]
Kilian, L. , and Zha, T. , 2002, “ Quantifying the Uncertainty About the Half-Life of Deviations From PPP,” J. Appl. Econometrics, 17(2), pp. 107–125. [CrossRef]
Chernatynskiy, A. , Phillpot, S. R. , and LeSar, R. , 2013, “ Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective,” Annu. Rev. Mater. Res., 43(1), pp. 157–182. [CrossRef]
Howe, D. , Goodlet, B. , Weaver, J. , and Spanos, G. , 2016, “ Insights From the 3rd World Congress on Integrated Computational Materials Engineering,” JOM, 68(5), pp. 1378–1384. [CrossRef]
Panchal, J. H. , Kalidindi, S. R. , and McDowell, D. L. , 2013, “ Key Computational Modeling Issues in Integrated Computational Materials Engineering,” Comput.-Aided Des., 45(1), pp. 4–25. [CrossRef]
McDowell, D. L. , and Kalidindi, S. R. , 2016, “ The Materials Innovation Ecosystem: A Key Enabler for the Materials Genome Initiative,” MRS Bull., 41(4), pp. 326–337. [CrossRef]
National Research Council, 2008, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security, The National Academies Press, Washington, DC.
TMS, 2015, Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales, The Minerals, Metals & Materials Society, Warrendale, PA.
Johnson, L. , and Arróyave, R. , 2016, “ An Inverse Design Framework for Prescribing Precipitation Heat Treatments From a Target Microstructure,” Mater. Des., 107, pp. 7–17.
Callister, W. D. , and Rethwisch, D. G. , 2010, Materials Science and Engineering: An Introduction, 8th ed., Wiley, Hoboken, NJ.
Kennedy, M. C. , and O'Hagan, A. , 2001, “ Bayesian Calibration of Computer Models,” J. R. Stat. Soc., Ser. B, 63(3), pp. 425–464. [CrossRef]
Liu, B. , and Xu, Q. , 2004, “ Advances on Microstructure Modeling of Solidification Process of Shape Casting,” Tsinghua Sci. Technol., 9(5), pp. 497–505.
Liu, P. , and Lusk, M. T. , 2002, “ Parametric Links Among Monte Carlo, Phase-Field, and Sharp-Interface Models of Interfacial Motion,” Phys. Rev. E, 66(6), p. 061603. [CrossRef]
Holm, E. , Srolovitz, D. J. , and Cahn, J. , 1993, “ Microstructural Evolution in Two-Dimensional Two-Phase Polycrystals,” Acta Metall. Mater., 41(4), pp. 1119–1136. [CrossRef]
Spittle, J. , and Brown, S. , 1989, “ Computer Simulation of the Effects of Alloy Variables on the Grain Structures of Castings,” Acta Metall., 37(7), pp. 1803–1810. [CrossRef]
Zhu, P. , and Smith, R. , 1992, “ Dynamic Simulation of Crystal Growth by Monte Carlo Method—I: Model Description and Kinetics,” Acta Metall. Mater., 40(4), pp. 683–692. [CrossRef]
Trucano, T. G. , Swiler, L. P. , Igusa, T. , Oberkampf, W. L. , and Pilch, M. , 2006, “ Calibration, Validation, and Sensitivity Analysis: What's What,” Reliab. Eng. Syst. Saf., 91(10), pp. 1331–1357. [CrossRef]
Ma, J. , Karaman, I. , and Noebe, R. D. , 2010, “ High Temperature Shape Memory Alloys,” Int. Mater. Rev., 55(5), pp. 257–315. [CrossRef]
Arróyave, R. , Talapatra, A. , Johnson, L. , Singh, N. , Ma, J. , and Karaman, I. , 2015, “ Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys,” Shape Memory Superelasticity, 1(4), pp. 429–449. [CrossRef]
Kaufman, L. , and Bernstein, H. , 1970, Computer Calculation of Phase Diagrams With Special Reference to Refractory Metals, Academic Press, New York.
Saunders, N. , and Miodownik, A. P. , 1998, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, Guildford, UK.
Arróyave, R. , Gibbons, S. , Galvan, E. , and Malak, R. , 2016, “ The Inverse Phase Stability Problem as a Constraint Satisfaction Problem: Application to Materials Design,” JOM, 68(5), pp. 1385–1395. [CrossRef]
Wagner, R. , Kampmann, R. , and Voorhees, P. W. , 2005, “ Homogeneous Second-Phase Precipitation,” Phase Transformations in Materials, Wiley-VCH, Weinheim, Germany, pp. 309–407.
Robson, J. , Jones, M. , and Prangnell, P. , 2003, “ Extension of the N-Model to Predict Competing Homogeneous and Heterogeneous Precipitation in Al–Sc Alloys,” Acta Mater., 51(5), pp. 1453–1468. [CrossRef]
Robson, J ., 2004, “ A New Model for Prediction of Dispersoid Precipitation in Aluminium Alloys Containing Zirconium and Scandium,” Acta Mater., 52(6), pp. 1409–1421. [CrossRef]
Deschamps, A. , Livet, F. , and Brechet, Y. , 1998, “ Influence of Predeformation on Ageing in an Al–Zn–Mg Alloy—I: Microstructure Evolution and Mechanical Properties,” Acta Mater., 47(1), pp. 281–292. [CrossRef]
Deschamps, A. , and Brechet, Y. , 1998, “ Influence of Predeformation and Ageing of an Al–Zn–Mg Alloy—II: Modeling of Precipitation Kinetics and Yield Stress,” Acta Mater., 47(1), pp. 293–305. [CrossRef]
Zhu, J. , Liu, Z. , Vaithyanathan, V. , and Chen, L. , 2002, “ Linking Phase-Field Model to CALPHAD: Application to Precipitate Shape Evolution in Ni-Base Alloys,” Scr. Mater., 46(5), pp. 401–406. [CrossRef]
Esmaeili, S. , and Lloyd, D. , 2005, “ Modeling of Precipitation Hardening in Pre-Aged AlMgSi (Cu) Alloys,” Acta Mater., 53(20), pp. 5257–5271. [CrossRef]
Cai, G. , and Mahadevan, S. , 2015, “ Uncertainty Quantification in ICMSE: Application to Metal Alloys,” AIAA Paper No. 2015-0383.
Crews, J. H. , and Smith, R. C. , 2014, “ Quantification of Parameter and Model Uncertainty for Shape Memory Alloy Bending Actuators,” J. Intell. Mater. Syst. Struct., 25(2), pp. 229–245. [CrossRef]
Casella, G. , and Berger, R. L. , 2002, Statistical Inference, 2nd ed., Duxbury, Pacific Grove, CA.
Friedman, J. , Hastie, T. , and Tibshirani, R. , 2001, The Elements of Statistical Learning, Springer, Berlin.
Tapia, G. , Elwany, A. , and Sang, H. , 2016, “ Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models,” Addit. Manuf., 12(Part B), pp. 282–290. [CrossRef]
Gelfand, A. E. , Diggle, P. , Guttorp, P. , and Fuentes, M. , 2010, Handbook of Spatial Statistics, CRC Press, Boca Raton, FL.
Banerjee, S. , Carlin, B. P. , and Gelfand, A. E. , 2014, Hierarchical Modeling and Analysis for Spatial Data, CRC Press, Boca Raton, FL.
Oakley, J. , and O'Hagan, A. , 2002, “ Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs,” Biometrika, 89(4), pp. 769–784. [CrossRef]
Sudderth, E. B. , and Jordan, M. I. , 2008, “ Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes,” Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, Dec. 8–11, pp. 1585–1592.
Rasmussen, C. E. , and Williams, C. K. I. , 2006, Gaussian Processes for Machine Learning, The MIT Press, Cambridge, MA.
Cressie, N. A. C. , 1993, Statistics for Spatial Data, Wiley, New York.
Kennedy, M. C. , and O'Hagan, A. , 2001, “ Supplementary Details on Bayesian Calibration of Computer Models,” Technical Report, https://www2.stat.duke.edu/courses/Spring14/sta961.01/ref/KennOHag2000b.pdf
Arendt, P. D. , Apley, D. W. , and Chen, W. , 2012, “ Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability,” ASME J. Mech. Des., 134(10), p. 100908. [CrossRef]
Arendt, P. D. , Apley, D. W. , Chen, W. , Lamb, D. , and Gorsich, D. , 2012, “ Improving Identifiability in Model Calibration Using Multiple Responses,” ASME J. Mech. Des., 134(10), p. 100909. [CrossRef]
Higdon, D. , Kennedy, M. , Cavendish, J. C. , Cafeo, J. A. , and Ryne, R. D. , 2004, “ Combining Field Data and Computer Simulations for Calibration and Prediction,” SIAM J. Sci. Comput., 26(2), pp. 448–466. [CrossRef]
Higdon, D. , Nakhleh, C. , Gattiker, J. , and Williams, B. , 2008, “ A Bayesian Calibration Approach to the Thermal Problem,” Comput. Methods Appl. Mech. Eng., 197(29), pp. 2431–2441. [CrossRef]
Higdon, D. , Gattiker, J. , Williams, B. , and Rightley, M. , 2008, “ Computer Model Calibration Using High-Dimensional Output,” J. Am. Stat. Assoc., 103(482), pp. 570–583. [CrossRef]
Lagoudas, D. C. , ed., 2008, Shape Memory Alloys: Modeling and Engineering Applications, Vol. 1, Springer Science & Business Media, New York.
Elahinia, M. H. , Hashemi, M. , Tabesh, M. , and Bhaduri, S. B. , 2012, “ Manufacturing and Processing of NiTi Implants: A Review,” Prog. Mater. Sci., 57(5), pp. 911–946. [CrossRef]
Rebelo, N. , and Perry, M. , 2000, “ Finite Element Analysis for the Design of Nitinol Medical Devices,” Minimally Invasive Ther. Allied Technol., 9(2), pp. 75–80. [CrossRef]
Falvo, A. , Furgiuele, F. , and Maletta, C. , 2008, “ Hysteresis Modeling of Two-Way Shape Memory Effect in NiTi Alloys,” Meccanica, 43(2), pp. 165–172. [CrossRef]
Maletta, C. , Falvo, A. , Furgiuele, F. , and Reddy, J. , 2009, “ A Phenomenological Model for Superelasticity in NiTi Alloys,” Smart Mater. Struct., 18(2), p. 025005. [CrossRef]
Olson, G. B. , 1997, “ Computational Design of Hierarchically Structured Materials,” Science, 277(5330), pp. 1237–1242. [CrossRef]
Kuehmann, C. , and Olson, G. , 2009, “ Computational Materials Design and Engineering,” Mater. Sci. Technol., 25(4), pp. 472–478. [CrossRef]
Kampmann, R. , and Wagner, R. , 1984, “ Kinetics of Precipitation in Metastable Binary Alloys–Theory and Application to Cu-1.9 at% Ti and Ni-14 at% Al,” Decomposition of Alloys: The Early Stages, Proceedings of the 2nd Acta-Scripta Metallurgica Conference, Pergamon, Turkey, pp. 91–103.
Kozeschnik, E. , and Buchmayr, B. , 1999, “ MATCALC—A Simulation Tool for Multicomponent Thermodynamics, Diffusion and Phase Transformations,” Fifth International Seminar on the Numerical Analysis of Weldability, pp. 349–361.
Kozeschnik, E. , Bataille, C. , and Janssens, K. , 2012, Modeling Solid-State Precipitation, Momentum Press, New York.
Avrami, M. , 1939, “ Kinetics of Phase Change—I: General Theory,” J. Chem. Phys., 7(12), pp. 1103–1112. [CrossRef]
Guo, W. , Steinbach, I. , Somsen, C. , and Eggeler, G. , 2011, “ On the Effect of Superimposed External Stresses on the Nucleation and Growth of Ni4Ti3 Particles: A Parametric Phase Field Study,” Acta Mater., 59(8), pp. 3287–3296. [CrossRef]
Sonderegger, B. , and Kozeschnik, E. , 2009, “ Generalized Nearest-Neighbor Broken-Bond Analysis of Randomly Oriented Coherent Interfaces in Multicomponent FCC and BCC Structures,” Metall. Mater. Trans. A, 40(3), pp. 499–510. [CrossRef]
Davis, R. A. , 2001, “ Gaussian Processes,” Encyclopedia of Environmetrics, Wiley, New York.
Chen, M. , Zhuang, Q. , Cook, D. R. , Coulter, R. , Pekour, M. , Scott, R. L. , Munger, J. , and Bible, K. , 2011, “ Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux Data,” Biogeosciences Discuss., 8(2), p. 2721. [CrossRef]
Harris, J. W. , and Stöcker, H. , 1998, Handbook of Mathematics and Computational Science, Springer Science & Business Media, New York.
Gilks, W. , Richardson, S. , and Spiegelhalter, D. , 1995, Markov Chain Monte Carlo in Practice, Chapman and Hall/CRC, Boca Raton, FL.
Robert, C. , and Casella, G. , 2013, Monte Carlo Statistical Methods, Springer Science & Business Media, New York.
Stein, M. L. , 2012, Interpolation of Spatial Data: Some Theory for Kriging, Springer Science & Business Media, New York.
Kim, J. , Liu, Y. , and Miyazaki, S. , 2004, “ Ageing-Induced Two-Stage R-Phase Transformation in Ti–50.9 at. % Ni,” Acta Mater., 52(2), pp. 487–499. [CrossRef]
Panchenko, E. Y. , Chumlyakov, Y. I. , Kireeva, I. , Ovsyannikov, A. , Sehitoglu, H. , Karaman, I. , and Maier, Y. , 2008, “ Effect of Disperse Ti3N4 Particles on the Martensitic Transformations in Titanium Nickelide Single Crystals,” Phys. Metals Metallogr., 106(6), pp. 577–589. [CrossRef]
Zheng, Y. , Jiang, F. , Li, L. , Yang, H. , and Liu, Y. , 2008, “ Effect of Ageing Treatment on the Transformation Behaviour of Ti–50.9 at. % Ni Alloy,” Acta Mater., 56(4), pp. 736–745. [CrossRef]
Frenzel, J. , George, E. P. , Dlouhy, A. , Somsen, C. , Wagner, M.-X. , and Eggeler, G. , 2010, “ Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys,” Acta Mater., 58(9), pp. 3444–3458. [CrossRef]
Owen, A. B. , 2013, “ Variance Components and Generalized Sobol’ Indices,” SIAM/ASA J. Uncertainty Quantif., 1(1), pp. 19–41. [CrossRef]


Grahic Jump Location
Fig. 1

Scatterplot matrix of the experimental dataset showing relative location of test data points to training data points

Grahic Jump Location
Fig. 2

Histograms and kernel density estimates ofthe posterior distribution for calibration parameters using direct calibration: (a) θ1, (b) θ2, and (c) θ3

Grahic Jump Location
Fig. 3

Histograms and kernel density estimates of the posterior distribution for calibration parameters using surrogate model: (a) θ1, (b) θ2, and (c) θ3

Grahic Jump Location
Fig. 4

Ten-fold cross-validation of the surrogate model η(·,·)

Grahic Jump Location
Fig. 5

Predictive distributions calculated for the testing set: (a) direct model and (b) surrogate model

Grahic Jump Location
Fig. 6

Sensitivity analysis using Sobol indices approach: (a) indices for the computer model and (b) indices for the calibrated surrogate model




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In