0
Research Papers

Experimental Study of Process Emissions From Atomic Layer Deposition of Al2O3 Under Various Temperatures and Purge Time

[+] Author and Article Information
Lulu Ma, Yuanyuan Xie, Fenfen Wang

Department of Mechanical Engineering,
University of Wisconsin Milwaukee,
Milwaukee, WI 53211

Dongqing Pan

Department of Engineering Technology,
University of North Alabama,
Florence, AL 35632

Chris Yuan

Department of Mechanical and
Aerospace Engineering,
Case Western Reserve University,
Cleveland, OH 44106
e-mail: Chris.yuan@case.edu

1Corresponding author.

Manuscript received July 28, 2016; final manuscript received January 8, 2017; published online January 30, 2017. Assoc. Editor: Y.B. Guo.

J. Manuf. Sci. Eng 139(5), 051013 (Jan 30, 2017) (7 pages) Paper No: MANU-16-1407; doi: 10.1115/1.4035722 History: Received July 28, 2016; Revised January 08, 2017

Experimental investigations of process emissions from atomic layer deposition (ALD) of Al2O3 are accomplished under various temperatures and purge times to understand its environmental sustainability performance. About 93% of Trimethylaluminum (TMA) is found flowing through ALD system without deposition. 2–9 × 104 of ultrafine nanoparticles containing 51.9 ± 4.6% of C, 16.6 ± 0.9% of Al, 31.4 ± 4.1% of O are generated during each cycle of reactions. 0.34–0.38 cm3 of CH4 (25 °C, 1 atm), which takes up 45–51% of C contained in TMA is produced simultaneously. The concentration of nanoparticles drops with the increase of purge time. CH4 also has a trend of decreasing but acts more complex with the largest emission at a short purge time. Compared with temperature, which has limited effects on reactants, purge time changes the time of reaction as well as the degree of gas phase mixing, and therefore greatly influences ALD emissions.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

George, S. , 2010, “ Atomic Layer Deposition: An Overview,” Chem. Rev., 110(1), pp. 111–131. [CrossRef] [PubMed]
Gao, X. , Guan, D. , Huo, J. , Chen, J. , and Yuan, C. , 2013, “ Free Standing TiO2 Nanotube Array Electrodes With an Ultra-Thin Al2O3 Barrier Layer and TiCl4 Surface Modification for Highly Efficient Dye Sensitized Solar Cells,” Nanoscale, 5(21), pp. 10438–10446. [CrossRef] [PubMed]
Gao, X. , Chen, J. , and Yuan, C. , 2013, “ Enhancing the Performance of Free-Standing TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells Via Ultraprecise Control of the Nanotube Wall Thickness,” J. Power Sources, 240(15), pp. 503–509. [CrossRef]
Guan, D. , Jeevarajan, J. , and Wang, Y. , 2011, “ Enhanced Cycleability of LiMn2O4 Cathodes by Atomic Layer Deposition of Nanosized-Thin Al2O3 Coatings,” Nanoscale, 3(4), pp. 1465–1469. [CrossRef] [PubMed]
Guan, D. , and Wang, Y. , 2013, “ Ultrathin Surface Coatings to Enhance Cycling Stability of LiMn2O4 Cathode in Lithium-Ion Batteries,” Ionics, 19(1), pp. 1–8. [CrossRef]
Lu, J. , Fu, B. , Kung, M. C. , Xiao, G. , Elam, J. W. , Kung, H. H. , and Stair, P. C. , 2012, “ Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition,” Science, 335(6073), pp. 1205–1208. [CrossRef] [PubMed]
Sneh, O. , Clark-Phelps, R. B. , Londergan, A. R. , Winkler, J. , and Seidel, T. , 2002, “ Thin Film Atomic Layer Deposition Equipment for Semiconductor Processing,” Thin Solid Films, 402(1), pp. 248–261. [CrossRef]
Huang, M. L. , Chang, Y. C. , Chang, C. H. , Lee, Y. J. , Chang, P. , Kwo, J. , Wu, T. B. , and Hong, M. , 2005, “ Surface Passivation of III-V Compound Semiconductors Using Atomic-Layer-Deposition-Grown Al2O3,” Appl. Phys. Lett., 87(25), p. 252104. [CrossRef]
Lee, S. , Pippel, E. , and Knez, M. , 2011, “ Metal Infiltration Into Biomaterials by ALD and CVD: A Comparative Study,” ChemPhysChem, 12(4), pp. 791–798. [CrossRef] [PubMed]
Sundqvist, J. , Lu, J. , Ottosson, M. , and Hårsta, A. , 2006, “ Growth of SnO2 Thin Films by Atomic Layer Deposition and Chemical Vapour Deposition: A Comparative Study,” Thin Solid Films, 514(1), pp. 63–68. [CrossRef]
Green, M. A. , 2005, “ Hydrogen Safety Issues Compared To Safety Issues With Methane and Propane,” Cryogenic Engineering Conference, Keystone, CO, Aug. 29–Sep. 2, pp. 319–326.
Payam, N. , Fatemeh, J. , Mohammad, M. T. , Mohammad, G. , and Muhd Zaimi, A. M. , 2015, “ A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector (With an Overview of the Top Ten CO2 Emitting Countries),” Renewable Sustainable Energy Rev., 43, pp. 843–862. [CrossRef]
Lu, J. , Zahedi, A. , Yang, S. , Wang, M. , and Peng, B. , 2013, “ Building the Hydrogen Economy in China: Drivers, Resources and Technologies,” Renewable Sustainable Energy Rev., 23, pp. 543–556. [CrossRef]
Pachauri, R. K. , Allen, M. R. , Barros, V. R. , Broome, J. , Cramer, W. , Christ, R. , and Dubash, N. K. , 2014, “ Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, Report No. 4, p. 44.
Howarth, R. W. , Santoro, R. , and Ingraffea, A. , 2011, “ Methane and the Greenhouse-Gas Footprint of Natural Gas From Shale Formations,” Clim. Change, 106(4), pp. 679–690. [CrossRef]
Forster, P. , Ramaswamy, V. , Artaxo, P. , Berntsen, T. , Betts, R. , Fahey, D. W. , Haywood, J. , Lean, J. , Lowe, D. C. , Myhre, G. , Nganga, J. , Prinn, R. , Raga, G. , Schulz, M. , and Van Dorland, R. , 2007, “ Changes in Atmospheric Constituents and in Radiative Forcing,” Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis , K. B. Averyt , M. Tignor , and H. L. Miller , eds., Cambridge University Press, Cambridge, UK, pp. 210–216.
Shine, K. P. , Fuglestvedt, J. S. , Hailemariam, K. , and Stuber, N. , 2005, “ Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases,” Clim. Change, 68(3), pp. 281–302. [CrossRef]
Milich, L. , 1999, “ The Role of Methane in Global Warming: Where Might Mitigation Strategies be Focused,” Global Environmental Change, 9(3), pp. 179–201. [CrossRef]
Ma, L. , Pan, D. , Xie, Y. , and Yuan, C. , 2015, “ Atomic Layer Deposition of Al2O3 Process Emissions,” RSC Adv., 17, pp. 12824–12829. [CrossRef]
Pöschl, U. , 2005, “ Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects,” Angew. Chem. Int. Ed., 44(46), pp. 7520–7540. [CrossRef]
Albanese, A. , Tang, P. S. , and Chan, W. , 2012, “ The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems,” Annu. Rev. Biomed. Eng., 14(1), pp. 1–16. [CrossRef] [PubMed]
Oberdörster, G. , Oberdörster, E. , and Oberdörster, J. , 2005, “ Nanotoxicology: An Emerging Discipline Evolving From Studies of Ultrafne Particles,” Environ. Health Perspect., 113(7), pp. 823–839. [CrossRef] [PubMed]
Becaria, A. , Campbell, A. , and Bondy, S. C. , 2002, “ Aluminum as a Toxicant,” Toxicol. Ind. Health, 18(7), pp. 309–320. [CrossRef] [PubMed]
Lin, W. , Stayton, I. , Huang, Y. , Zhou, X. , and Ma, Y. , 2008, “ Cytotoxicity and Cell Membrane Depolarization Induced by Aluminum Oxide Nanoparticles in Human Lung Epithelial Cells A549,” Toxicol. Environ. Chem., 90(5), pp. 983–996. [CrossRef]
Krewski, D. , Yokel, R. A. , Nieboer, E. , Borchelt, D. , Cohen, J. , Harry, J. , Kacew, S. , Lindsay, J. , Mahfouz, A. M. , and Rondeau, V. , 2007, “ Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide,” J. Toxicol. Environ. Health Part B, 10(s1), pp. 1–269. [CrossRef]
Ganrot, P. O. , 1986, “ Metabolism and Possible Health Effects of Aluminum,” Environ. Health Perspect., 65, pp. 363–441. [PubMed]
Klein, G. , 1998, “ Metabolic Bone Disease of Total Parenteral Nutrition,” Nutrition, 14(1), pp. 149–152. [CrossRef] [PubMed]
Fewtrell, M. S. , Bishop, N. J. , Edmonds, C. J. , Isaacs, E. B. , and Lucas, A. L. , 2009, “ Aluminum Exposure From Parenteral Nutrition in Preterm Infants: Bone Health at 15-Year Follow-up,” Pediatrics, 124(5), pp. 1372–1709. [CrossRef] [PubMed]
Xie, Y. , Ma, L. , Pan, D. , and Yuan, C. , 2015, “ Mechanistic Modeling of Atomic Layer Deposition of Alumina Process With Detailed Surface Chemical Kinetics,” Chem. Eng. J., 259(1), pp. 213–220. [CrossRef]
Hoex, B. , Schmidt, J. , Pohl, P. , Van de Sanden, M. C. M. , and Kessels, W. M. M. , 2008, “ Silicon Surface Passivation by Atomic Layer Deposited Al2O3,” J. Appl. Phys., 104(4), p. 044903. [CrossRef]
Gutiérrez, G. , and Johansson, B. , 2002, “ Molecular Dynamics Study of Structural Properties of Amorphous Al2O3,” Phys. Rev. B, 65(10), p. 104202. [CrossRef]
Groner, M. D. , Fabreguette, F. H. , Elam, J. W. , and George, S. M. , 2004, “ Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater., 16(4), pp. 639–645. [CrossRef]
Travis, C. D. , and Adomaitis, R. A. , 2013, “ Modeling ALD Surface Reaction and Process Dynamics Using Absolute Reaction Rate Theory,” Chem. Vap. Deposition, 19(1–3), pp. 4–14. [CrossRef]
Puurunen, R. L. , Lindblad, M. , Rootc, A. , and Krause, A. O. , 2001, “ Successive Reactions of Gaseous Trimethylaluminium and Ammonia on Porous Alumina,” Phys. Chem. Chem. Phys., 3(6), pp. 1093–1102. [CrossRef]
Yuan, C. , and Dornfeld, D. , 2010, “ Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing,” ASME J. Manuf. Sci. Eng., 132(3), p. 030918. [CrossRef]
Bzdek, B. R. , Ross Pennington, M. , and Johnston, M. V. , 2012, “ Single Particle Chemical Analysis of Ambient Ultrafine Aerosol: A Review,” J. Aerosol Sci., 52, pp. 109–120. [CrossRef]
Reche, C. , Viana, M. , Brines, M. , Pérez, N. , Beddows, D. , Alastuey, A. , and Querol, X. , 2015, “ Determinants of Aerosol Lung-Deposited Surface Area Variation in an Urban Environment,” Sci. Total Environ., 517(1), pp. 38–47. [CrossRef] [PubMed]
Reche, C. , Querol, X. , Alastuey, A. , Viana, M. , Pey, J. , Moreno, T. , Rodríguez, S. , González, Y. , Fernández-Camacho, R. , Sánchez de la Campa, A. M. , de la Rosa, J. , Dall'Osto, M. , Prévôt, A. S. H. , Hueglin, C. , Harrison, R. M. , and Quincey, P. , 2011, “ New Consideration for PM, Black Carbon and Particle Number Concentration for Air Quality Monitoring Across Different European Cities,” Atmos. Chem. Phys., 11(13), pp. 6207–6227. [CrossRef]
Kang, H. , Zhu, B. , Su, J. , Wang, H. , Zhang, Q. , and Wang, F. , 2013, “ Analysis of a Long-Lasting Haze Episode in Nanjing, China,” Atmos. Res., 120–121, pp. 78–87. [CrossRef]
Kupc, A. , Bischof, O. , Tritscher, T. , Beeston, M. , Krinke, T. , and Wagner, P. , 2013, “ Laboratory Characterization of a New Nano-Water-Based CPC 3788 and Performance Comparison to an Ultrafine Butanol-Based CPC 3776,” Aerosol Sci. Technol., 47(2), pp. 183–191. [CrossRef]
Bischof, O. F. , Zerrath, A. F. , Shi, Q. , Han, H.-S. , Kerrigan, S. W. , and Johnson, E. M. , 2005, “ Evaluation and Performance Characterization of a New Ultrafine Condensation Particle Counter,” NOSA Aerosol Symposium, Göteborg, Sweden, Nov. 3–4.
Mordas, G. , Manninen, H. E. , Petäjä, T. , Aalto, P. P. , Hämeri, K. , and Kulmala, M. , 2008, “ On Operation of the Ultra-Fine Water-Based CPC TSI3786 and Comparison With Other TSI Models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007),” Aerosol Sci. Technol., 42(2), pp. 152–158. [CrossRef]
Pan, D. , Li, T. , Jen, T. , and Yuan, C. , 2014, “ Numerical Modeling of Carrier Gas Flow in Atomic Layer Deposition Vacuum Reactor: A Comparative Study of Lattice Boltzmann Models,” J. Vac. Sci. Technol. A, 32(1), p. 01A110. [CrossRef]
Swihart, M. , 2003, “ Vapor-Phase Synthesis of Nanoparticles,” Curr. Opin. Colloid Interface Sci., 8(1), pp. 127–133. [CrossRef]
Kruis, F. , Fissan, H. , and Peled, A. , 1998, “ Synthesis of Nanoparticles in the Gas Phase for Electronic Optical and Magnetic Applications—A Review,” J. Aerosol Sci., 29(5), pp. 511–535. [CrossRef]
Eggerdorfer, M. , and Partsinis, S. , 2014, “ Agglomerates and Aggregates of Nanoparticles Made in the Gas Phase,” Adv Powder Technol., 25(1), pp. 71–90. [CrossRef]
Augenbraun, H. , Matthews, E. , and Sarma, D. , 2010, “ The Global Methane Cycle,” GISS Institute on Climate and Planets, New York, accessed Jan. 2017, http://icp.giss.nasa.gov/education/methane/intro/cycle.html
Stocker, T. F. , Qin, D. , Plattner, G. K. , Tignor, M. , Allen, S. K. , Boschung, J. , Nauels, A. , Xia, Y. , Bex, V. , and Midgley, P. M. , 2014, Climate Change 2013: The Physical Science Basis,” Cambridge University Press, Cambridge, UK.
Castellano, R. , 2016, “ Thin Film Deposition Trends, Key Issues, Market Analysis,” The Information Network, New Tripolo, PA, accessed Jan. 2017, http://www.theinformationnet.com/thin_film.html
Yun, S. J. , Lee, K. , Skarp, J. , Kim, H. , and Nam, K. , 1993, “ Dependence of Atomic Layer-Deposited Al2O3 Films Characteristics on Growth Temperature and Al Precursors of Al(CH3)3 and AlCl3,” J. Vac. Sci. Technol. A, 15(6), pp. 2993–2997. [CrossRef]
Wind, R. A. , and George, S. M. , 2010, “ Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125 °C,” J. Phys. Chem. A, 114(3), pp. 1281–1289. [CrossRef] [PubMed]
Dillon, A. C. , Ott, A. W. , Way, J. D. , and George, S. M. , 1995, “ Surface Chemistry of Al2O3 Deposition Using Al(CH3)3 and H2O in a Binary Reaction Sequence,” Surf. Sci., 322(1–3), pp. 230–242. [CrossRef]
Richter, A. , Benick, J. , Hermle, M. , and Glunz, S. W. , 2014, “ Reaction Kinetics During the Thermal Activation of the Silicon Surface Passivation With Atomic Layer Deposited Al2O3,” Appl. Phys. Lett., 104(6), p. 061606. [CrossRef]
van Hemmen, J. L. , Heil, S. B. S. , Klootwijk, J. H. , Roozeboom, F. , Hodson, C. J. , Van de Sanden, M. C. M. , and Kessels, W. M. M. , 2007, “ Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor,” J. Electrochem. Soc., 154(7), pp. G165–G169. [CrossRef]
Puurunen, R. L. , 2005, “ Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process,” J. Appl. Phys., 97(12), p. 121301. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of savannah 100 ald system

Grahic Jump Location
Fig. 2

Schematics of size distribution measurement and nanoparticle collection

Grahic Jump Location
Fig. 3

Nanoparticle emission versus time of 25 cycles of ALD reactions

Grahic Jump Location
Fig. 4

Number concentration of nanoparticles emitted in each cycle of ALD reaction

Grahic Jump Location
Fig. 5

Size distribution of nanoparticles emitted from ALD reactions

Grahic Jump Location
Fig. 6

Morphology of nanoparticles. (a), (b), and (c) are measured by SEM; (d), (e), and (f) are obtained by TEM.

Grahic Jump Location
Fig. 7

Quantitative measurement of CH4 (25 °C, 1 atm) emitted in each cycle of ALD reaction

Grahic Jump Location
Fig. 8

Growth rate of Al2O3 deposition

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In