0
Research Papers

Analysis of Torque in Friction Stir Welding of Aluminum Alloy 5052 by Inverse Problem Method

[+] Author and Article Information
Karen Johanna Quintana Cuellar

Department of Mechanical Engineering,
COPPE,
Universidade Federal do Rio de Janeiro,
Rio de Janeiro CEP 21941-972, Brazil;
Centro de Tecnologia,
Cidade Universitária,
Ilha do Fundão, Bloco G,
Sala 204, P.O. Box 68503,
Rio de Janeiro, RJ CEP 21941-972, Brazil
e-mail: kjquintanac@gmail.com

Jose Luis L. Silveira

Mem. ASME
Department of Mechanical Engineering,
COPPE and Escola Politécnica,
Universidade Federal do Rio de Janeiro,
Rio de Janeiro CEP 21941-972, Brazil;
Centro de Tecnologia,
Cidade Universitária,
Ilha do Fundão, Bloco G,
Sala 204, P.O. Box 68503,
Rio de Janeiro, RJ CEP 21941-972, Brazil
e-mail: jluis@mecanica.ufrj.br

1Corresponding author.

Manuscript received June 27, 2016; final manuscript received January 3, 2017; published online January 27, 2017. Assoc. Editor: Wayne Cai.

J. Manuf. Sci. Eng 139(4), 041017 (Jan 27, 2017) (8 pages) Paper No: MANU-16-1350; doi: 10.1115/1.4035719 History: Received June 27, 2016; Revised January 03, 2017

Torque influences the main phenomena that occur during friction stir welding (FSW) process. However, models for torque have received little attention. In this paper, inverse problem method is used to estimate the parameters for a model for torque, measured during FSW experiments for different combinations of rotational and welding speeds. The experimental results are used as input data to estimate the model parameters. The results showed a good agreement between the experimental data and the model obtained using the inverse problem method. The influence of the tool geometry on torque was observed by comparing previously published experimental results and the experimental data presented.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zhang, Z. , and Zhang, H. W. , 2014, “ Solid Mechanics-Based Eulerian Model of Friction Stir Welding,” Int. J. Adv. Manuf. Technol., 72(9), pp. 1647–1653. [CrossRef]
Singh, G. , Singh, K. , and Singh, J. , 2012, “ Modelling of the Effect of Process Parameters on Tensile Strength of Friction Stir Welded Aluminum Alloy Joints,” Exp. Tech. Soc. Exp. Mech., 38(3), pp. 63–71.
Simar, A. , Bréchet, Y. , De Meester, B. , Denquin, A. , Gallais, C. , and Pardoen, T. , 2012, “ Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process, Microstructure and Properties,” Prog. Mater. Sci., 57(1), pp. 95–183. [CrossRef]
Mahoney, M. W. , Rhodes, C. G. , Flintoff, J. G. , Spurling, R. A. , and Bingel, W. H. , 1998, “ Properties of Friction-Stir-Welded 7075 T651 Aluminum,” Metall. Mater. Trans. A., 29(7), pp. 1955–1964. [CrossRef]
Rhodes, C. G. , Mahoney, M. W. , Bingel, W. H. , Spurling, R. A. , and Bampton, C. C. , 1997, “ Effects of Friction Stir Welding on Microstructure of 7075 Aluminum,” Scr. Mater., 36(1), pp. 69–15. [CrossRef]
Rajakumar, S. , Muralidharan, C. , and Balasubramanian, V. , 2011, “ Statistical Analysis to Predict Grain Size and Hardness of the Weld Nugget of Friction-Stir-Welded AA6061-T6 Aluminium Alloy Joints,” Int. J. Adv. Manuf. Technol., 57(1), pp. 151–165. [CrossRef]
Rajakumar, S. , Muralidharan, C. , and Balasubramanian, V. , 2010, “ Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints,” Trans. Nonferrous Met. Soc. China, 20(10), pp. 1863–1872. [CrossRef]
Qian, J. , Li, J. , Sun, F. , Xiong, J. , Zhang, F. , and Lina, X. , 2013, “ An Analytical Model to Optimize Rotation Speed and Travel Speed of Friction Stir Welding for Defect-Free Joints,” Scr. Mater., 68(3–4), pp. 175–178. [CrossRef]
Zhao, X. , Kalya, P. , Landers, R. G. , and Krishnamurthy, K. , 2008, “ Design and Implementation of Nonlinear Force Controllers for Friction Stir Welding Processes,” ASME J. Manuf. Sci. Eng., 130(6), p. 061011. [CrossRef]
Nandan, R. , DebRoy, T. , and Bhadeshia, H. K. D. H. , 2008, “ Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties,” Prog. Mater. Sci., 53(6), pp. 980–1023. [CrossRef]
Mishra, R. S. , and Ma, Z. Y. , 2005, “ Friction Stir Welding and Processing,” Mater. Sci. Eng. R, 50(1–2), pp. 1–78. [CrossRef]
Polar, A. , and Indacochea, J. E. , 2009, “ Microstructural Assessment of Copper Friction Stir Welds,” ASME J. Manuf. Sci. Eng., 131(3), p. 031012. [CrossRef]
Long, T. , Tang, W. , and Reynolds, A. , 2007, “ Process Response Parameter Relationships in Aluminium Alloy Friction Stir Welds,” Sci. Technol. Weld. Joining, 12(4), pp. 311–317. [CrossRef]
Yan, J. , Sutton, M. , and Reynolds, A. , 2005, “ Process–Structure–Property Relationships for Nugget and Heat Affected Zone Regions of AA2524–T351 Friction Stir Welds,” Sci. Technol. Weld. Joining, 10(6), pp. 725–736. [CrossRef]
Khandkar, M. , Khan, J. , and Reynolds, A. , 2003, “ Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model,” Sci. Technol. Weld. Joining, 8(3), pp. 165–174. [CrossRef]
Arora, A. , Mehta, M. , De, A. , and DebRoy, T. , 2012, “ Load Bearing Capacity of Tool Pin During Friction Stir Welding,” Int. J. Adv. Manuf. Technol., 61(9–12), pp. 911–920. [CrossRef]
Mehta, M. , Arora, A. , De, A. , and DebRoy, T. , 2011, “ Tool Geometry for Friction Stir Welding-Optimum Shoulder Diameter,” Metall. Mater. Trans. A, 42(9), pp. 2716–2722. [CrossRef]
Upadhyay, P. , and Reynolds, A. P. , 2010, “ Effects of Thermal Boundary Conditions in Friction Stir Welded AA7050-T7 Sheets,” Mater. Sci. Eng. A, 527(6), pp. 1537–1543. [CrossRef]
Longhurst, W. R. , Strauss, A. M. , Cook, G. E. , and Fleming, P. A. , 2010, “ Torque Control of Friction Stir Welding for Manufacturing and Automation,” Int. J. Adv. Manuf. Technol., 51(9–12), pp. 905–913. [CrossRef]
Gibson, B. T. , Lammlein, D. H. , Prater, T. J. , Longhurstd, W. R. , Coxa, C. D. , Balluna, M. C. , Dharmaraja, K. J. , Cooka, G. E. , and Straussa, A. M. , 2014, “ Friction Stir Welding: Process, Automation, and Control,” J. Manuf. Process, 16(1), pp. 56–73. [CrossRef]
Mendes, N. , Neto, P. , Loureiro, A. , and Moreira, A. P. , 2016, “ Machines and Control Systems for Friction Stir Welding: A Review,” Mater. Des., 90, pp. 256–265.
Cui, S. , and Chen, Z. W. , 2009, “ Effects of Tool Speeds and Corresponding Torque/Energy on Stir Zone Formation During Friction Stir Welding/Processing,” IOP Conf. Ser.: Mater. Sci. Eng., 4(1), p. 012019.
Schmidt, H. , Hattel, J. , and Wert, J. , 2004, “ An Analytical Model for the Heat Generation in Friction Stir Welding,” Modell. Simul. Mater. Sci. Eng., 12(1), pp. 143–157. [CrossRef]
Cui, S. , Chen, Z. W. , and Robson, J. D. , 2010, “ A Model Relating Tool Torque and Its Associated Power and Specific Energy to Rotation and Forward Speeds During Friction Stir Welding/Processing,” Int. J. Mach. Tools Manuf., 50(12), pp. 1023–1030. [CrossRef]
Pew, J. W. , Nelson, T. W. , and Sorensen, C. D. , 2007, “ Torque Based Weld Power Model for Friction Stir Welding,” Sci. Technol. Weld. Joining, 12(4), pp. 341–347. [CrossRef]
Leitão, C. , Louro, R. , and Rodrigues, D. M. , 2012, “ Using Torque Sensitivity Analysis in Accessing Friction Stir Welding/Processing conditions,” J. Mater. Process. Technol., 212(10), pp. 2051–2057. [CrossRef]
Arora, A. , Nandan, R. , Reynolds, A. , and DebRoy, P. , 2009, “ Torque, Power Requirement and Stir Zone Geometry in Friction Stir Welding Through Modeling and Experiments,” Scr. Mater., 60(1), pp. 13–16. [CrossRef]
Mehta, M. , Chatterjee, K. , and De, A. , 2013, “ Monitoring Torque and Traverse Force in Friction Stir Welding From Input Electrical Signatures of Driving Motors,” Sci. Technol. Weld. Joining, 18(3), pp. 191–197. [CrossRef]
Orlande, H. R. B. , 2010, “ Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications,” ASME J. Heat Transfer, 134(3), p. 031001.
Woodbury, K. A. , Beck, J. V. , and Najafi, H. , 2014, “ Filter Solution of Inverse Heat Conduction Problem Using Measured Temperature History as Remote Boundary Condition,” Int. J. Heat Mass Transfer, 72, pp. 139–147. [CrossRef]
Barrios, A. N. S. , Silva, J. B. C. , Rodrigues, A. R. , Coelho, R. T. , Braghini, A., Jr. , and Matsumoto, H. , 2014, “ Modeling Heat Transfer in Die Milling,” Appl. Therm. Eng., 64(1–2), pp. 108–116. [CrossRef]
Naveira-Cotta, C. P. , Cotta, R. M. , Orlande, H. R. B. , and Kakaç, S. , 2010, “ Direct and Inverse Problems Solutions in Micro-Scale Forced Convection,” Microfluidics Based Microsystems (NATO Science for Peace and Security Series A: Chemistry and Biology), Springer, Dordrecht, The Netherlands, pp. 39–59.
Dou, R. , Wen, Z. , Zhou, G. , Liu, X. , and Feng, X. , 2014, “ Experimental Study on Heat-Transfer Characteristics of Circular Water Jet Impinging on High-Temperature Stainless Steel Plate,” Appl. Therm. Eng., 62(2), pp. 738–746. [CrossRef]
Mejias, M. M. , Orlande, H. R. B. , and Ozisik, M. N. , 1999, “ A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids,” 3rd International Conference on Inverse Problems in Engineering, Port Ludlow, WA, June 13–18.
Hsu, P. T. , Yang, Y. T. , and Chen, C. K. , 1998, “ A Three-Dimensional Inverse Problem of Estimating the Surface Thermal Behavior of the Working Roll in Rolling Process,” ASME J. Manuf. Sci. Eng., 122(1), pp. 76–82. [CrossRef]
Pereyra, S. , Lombera, G. A. , and Urquiza, S. A. , 2014, “ Modelado Numérico del proceso de Soldadura FSW Incorporando una técnica de estimación de parámetros,” Rev. Int. Métodos Numéricos Cálculo Diseño Ing., 30(3), pp. 173–177.
Lambrakos, S. G. , Fonda, R. W. , Milewski, J. O. , and Mitchell, J. E. , 2003, “ Analysis of Friction Stir Welds Using Thermocouple Measurements,” Sci. Technol. Weld. Joining, 8(5), pp. 385–390. [CrossRef]
Mejias, M. M. , Orlande, H. R. B. , and Ozisik, M. N. , 2003, “ Effects of the Heating Process and Body Dimensions on the Estimation of the Thermal Conductivity Components of Orthotropic Solids,” Inverse Probl. Eng., 11(1), pp. 75–89. [CrossRef]
Hussein, S. A. , Tahir, A. S. M. , and Izamshah, R. , 2015, “ Generated Forces and Heat During the Critical Stages of Friction Stir Welding and Processing,” J. Mech. Sci. Technol., 29(10), pp. 4319–4328. [CrossRef]
Peel, M. J. , Steuwer, A. , Withers, P. J. , Dickerson, T. , Shi, Q. , and Shercliff, H. , 2006, “ Dissimilar Friction Stir Welds in AA5083-AA6082—Part I: Process Parameter Effects on Thermal History and Weld Properties,” Metall. Mater. Trans. A, 37(7), pp. 2183–2193. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

CNC machining center adapted to FSW

Grahic Jump Location
Fig. 2

Tool of H13 used to obtain the welds

Grahic Jump Location
Fig. 3

(a) Experimental data for the torque as a function of the rotational speed and (b) fitted curve of torque for a welding speed of 300 mm/min

Grahic Jump Location
Fig. 4

(a) Reduced sensitivity coefficient for v = 500 mm/min, (b) variable frequency, and (c) fixed frequency of the D-optimal design for different welding speeds in millimeter per minute

Grahic Jump Location
Fig. 5

(a) Convergence of the Levenberg–Marquardt method for the estimated parameters A, C, and a. Parameters converge to A = 3.0222, C = 83.9655, and a = 0.0053. (b) Torque behavior as a function of rotational speed obtained experimentally, by the Cui's model [24] and by the estimated model via inverse problem methodology.

Grahic Jump Location
Fig. 6

Comparison between the torque behavior as a function of rotational speed obtained by the Cui's model [24], by the estimated model via inverse problem using experimental data from Ref. [26], and experimental data of torque from literature for different aluminum alloys and welding speeds

Grahic Jump Location
Fig. 7

Power and specific energy behavior as a function of rotational speed computed from the torque Cui's model [24], from the torque estimated model via inverse problem using the experimental results obtained in this study, and from the torque experimental results

Grahic Jump Location
Fig. 8

Torque, power, and specific energy as a function of the welding speed computed from the estimated model via inverse problem using the present experimental results

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In