0
research-article

Localized necking in elastomer-supported metal layers: impact of kinematic hardening

[+] Author and Article Information
Mohamed Ben Bettaieb

LEM3, UMR CNRS 7239 – Arts et Métiers ParisTech, 4 rue Augustin Fresnel, 57078 Metz Cedex 3, France
mohamed.benbettaieb@ensam.eu

Farid Abed-Meraim

DAMAS, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures, Université de Lorraine, France
farid.abed-meraim@ensam.eu

1Corresponding author.

ASME doi:10.1115/1.4035183 History: Received March 11, 2016; Revised October 29, 2016

Abstract

The present paper deals with localized necking in stretched metal sheets using the initial imperfection approach. The first objective is to study the effect of kinematic hardening on the formability of a freestanding metal layer. To this end, the behavior of the metal layer is assumed to follow the rigid-plastic rate-independent flow theory. The isotropic (resp. kinematic) hardening of this metal is modeled by the Hollomon (resp. Prager) law. A parametric study is carried out in order to investigate the effect of kinematic hardening on the formability limits. It is shown that the effect of kinematic hardening on the ductility limit is noticeably different depending on the strain path considered. The second aim of the paper is to analyze the effect of an elastomer substrate, perfectly bonded to the metal layer, on the formability of the whole bilayer. It is found that the addition of an elastomer layer substantially enhances the formability of the bilayer, in agreement with earlier studies.

Copyright (c) 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In