Research Papers

Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis With Microstructure Prediction

[+] Author and Article Information
Ninggang Shen

Department of Mechanical and
Industrial Engineering,
University of Iowa,
Iowa City, IA 52242

Hongtao Ding

Department of Mechanical and
Industrial Engineering,
University of Iowa,
Iowa City, IA 52242
e-mail: hongtao-ding@uiowa.edu

Zhengwen Pu, I. S. Jawahir

Institute for Sustainable Manufacturing (ISM),
University of Kentucky,
Lexington, KY 40506

Tao Jia

GE Global Research
Niskayuna, NY 12309

1Corresponding author.

Manuscript received February 5, 2016; final manuscript received July 5, 2016; published online January 31, 2017. Assoc. Editor: Guillaume Fromentin.

J. Manuf. Sci. Eng 139(6), 061012 (Jan 31, 2017) (13 pages) Paper No: MANU-16-1093; doi: 10.1115/1.4034279 History: Received February 05, 2016; Revised July 05, 2016

The use of magnesium (Mg) alloy has been continuously on the rise with numerous expanded application in transportation/aerospace industries due to their lightweight and other areas, such as biodegradable medical implants. It was shown recently that machining can be used to improve the functional performance of Mg-based products/components, such as corrosion resistance, through engineered surface integrity. In this paper, the behavior of AZ31B Mg alloy in cryogenic machining was discussed firstly. The surface integrity can be significantly improved by introducing the ultrafine grained (UFG) layer due to the severe plastic deformation (SPD) effect during cryogenic machining. The mechanisms of microstructure evolution and plastic deformation were analyzed based on the experimental findings in literature. A physics-based constitutive model involving material plasticity and grain refinement is developed based on both slip and twinning mechanisms and successfully implemented in a finite-element (FE) analysis with multiple cutting passes to predict the microstructure evolution by nanocrystalline grain refinement and other improvement of the surface integrity in the cryogenic machining of AZ31B Mg alloy. With a more quantitative assessment, the FE model results are further discussed for grain refinement, changes in microhardness, residual stresses, and slip/twinning mechanism with the apparent SPD taking place due to rapid cryogenic cooling.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Watarai, H. , 2006, “ Trend of Research and Development of Magnesium Alloys—Reducing the Weight of Structural Materials in Motor Vehicles,” Sci. & Tech. Trends Quarterly Rev. 18, pp. 84–97.
Witte, F. , 2010, “ The History of Biodegradable Magnesium Implants: A Review,” Acta Biomater., 6(5), pp. 1680–1692. [CrossRef] [PubMed]
Polmear, I. J. , 1994, “ Magnesium Alloys and Applications,” Mater. Sci. Technol., 10(1), pp. 1–16. [CrossRef]
Wojtowicz, N. , Danis, I. , Monies, F. , Lamesle, P. , and Chieragati, R. , 2013, “ The Influence of Cutting Conditions on Surface Integrity of a Wrought Magnesium Alloy,” Procedia Eng., 63, pp. 20–28. [CrossRef]
Rubio, E. , Villeta, M. , Carou, D. , and Saá, A. , 2014, “ Comparative Analysis of Sustainable Cooling Systems in Intermittent Turning of Magnesium Pieces,” Int. J. Precis. Eng. Manuf., 15(5), pp. 929–940. [CrossRef]
Kim, B. , Park, C. H. , Kim, H. S. , You, B. S. , and Park, S. S. , 2014, “ Grain Refinement and Improved Tensile Properties of Mg–3Al–1Zn Alloy Processed by Low-Temperature Indirect Extrusion,” Scr. Mater., 76, pp. 21–24. [CrossRef]
Jawahir, I. S. , Brinksmeier, E. , M'Saoubi, R. , Aspinwall, D. K. , Outeiro, J. C. , Meyer, D. , Umbrello, D. , and Jayal, A. D. , 2011, “ Surface Integrity in Material Removal Processes: Recent Advances,” CIRP Ann. Manuf. Technol., 60(2), pp. 603–626. [CrossRef]
Staiger, M. P. , Pietak, A. M. , Huadmai, J. , and Dias, G. , 2006, “ Magnesium and Its Alloys as Orthopedic Biomaterials: A Review,” Biomaterials, 27(9), pp. 1728–1734. [CrossRef] [PubMed]
Wang, Z. Y. , and Rajurkar, K. P. , 2000, “ Cryogenic Machining of Hard-to-Cut Materials,” Wear, 239(2), pp. 168–175. [CrossRef]
Paul, S. , Dhar, N. , and Chattopadhyay, A. , 2001, “ Beneficial Effects of Cryogenic Cooling Over Dry and Wet Machining on Tool Wear and Surface Finish in Turning AISI 1060 Steel,” J. Mater. Process. Technol., 116(1), pp. 44–48. [CrossRef]
Pusavec, F. , Hamdi, H. , Kopac, J. , and Jawahir, I. S. , 2011, “ Surface Integrity in Cryogenic Machining of Nickel Based Alloy—Inconel 718,” J. Mater. Process. Technol., 211(4), pp. 773–783. [CrossRef]
Ambrosy, F. , Zanger, F. , Schulze, V. , and Jawahir, I. S. , 2014, “ An Experimental Study of Cryogenic Machining on Nanocrystalline Surface Layer Generation,” Procedia CIRP, 13, pp. 169–174. [CrossRef]
Umbrello, D. , Yang, S. , Dillon, O. W. , and Jawahir, I. S. , 2012, “ Effects of Cryogenic Cooling on Surface Layer Alterations in Machining of AISI 52100 Steels,” Mater. Sci. Technol., 28(11), pp. 1320–1331. [CrossRef]
Outeiro, J. C. , Rossi, F. , Fromentin, G. , Poulachon, G. , Germain, G. , and Batista, A. C. , 2013, “ Process Mechanics and Surface Integrity Induced by Dry and Cryogenic Machining of AZ31B-O Magnesium Alloy,” Procedia CIRP, 8, pp. 487–492. [CrossRef]
Pu, Z. , Outeiro, J. C. , Batista, A. C. , Dillon, O. W. , Puleo, D. A. , and Jawahir, I. S. , 2012, “ Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components,” Int. J. Mach. Tools Manuf., 56, pp. 17–27. [CrossRef]
Turnbull, A. , Mingard, K. , Lord, J. D. , Roebuck, B. , Tice, D. R. , Mottershead, K. J. , Fairweather, N. D. , and Bradbury, A. K. , 2011, “ Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure,” Corros. Sci., 53(10), pp. 3398–3415. [CrossRef]
Bermingham, M. J. , Kirsch, J. , Sun, S. , Palanisamy, S. , and Dargusch, M. S. , 2011, “ New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti–6Al–4V,” Int. J. Mach. Tools Manuf., 51(6), pp. 500–511. [CrossRef]
Denkena, B. , and Lucas, A. , 2007, “ Biocompatible Magnesium Alloys as Absorbable Implant Materials—Adjusted Surface and Subsurface Properties by Machining Processes,” CIRP Ann. Manuf. Technol., 56(1), pp. 113–116. [CrossRef]
Wang, H. , Estrin, Y. , Fu, H. , Song, G. , and Zúberová, Z. , 2007, “ The Effect of Pre-Processing and Grain Structure on the Bio-Corrosion and Fatigue Resistance of Magnesium Alloy AZ31,” Adv. Eng. Mater., 9(11), pp. 967–972. [CrossRef]
Rotella, G. , Dillon, O. W. , Umbrello, D. , Settineri, L. , and Jawahir, I. S. , 2013, “ Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy,” SME J. Manuf. Process., 15(1), pp. 87–95. [CrossRef]
Tabei, A. , Shih, D. S. , Garmestani, H. , and Liang, S. Y. , 2016, “ Dynamic Recrystallization of Al Alloy 7075 in Turning,” ASME J. Manuf. Sci. Eng., 138(7), p. 071010. [CrossRef]
Jafarian, F. , Imaz Ciaran, M. , Umbrello, D. , Arrazola, P. J. , Filice, L. , and Amirabadi, H. , 2014, “ Finite Element Simulation of Machining Inconel 718 Alloy Including Microstructure Changes,” Int. J. Mech. Sci., 88, pp. 110–121. [CrossRef]
Pu, Z. , Umbrello, D. , Dillon, O. W. , Lu, T. , Puleo, D. a. , and Jawahir, I. S. , 2014, “ Finite Element Modeling of Microstructural Changes in Dry and Cryogenic Machining of AZ31B Magnesium Alloy,” SME J. Manuf. Process., 16(2), pp. 335–343. [CrossRef]
Umbrello, D. , Caruso, S. , and Imbrogno, S. , 2016, “ Finite Element Modelling of Microstructural Changes in Dry and Cryogenic Machining AISI 52100 Steel,” Materials Science and Technology (Published online).
Knezevic, M. , Levinson, A. , Harris, R. , Mishra, R. K. , Doherty, R. D. , and Kalidindi, S. R. , 2010, “ Deformation Twinning in AZ31: Influence on Strain Hardening and Texture Evolution,” Acta Mater., 58(19), pp. 6230–6242. [CrossRef]
Sun, H. Q. , Shi, Y.-N. , Zhang, M.-X. , and Lu, K. , 2007, “ Plastic Strain-Induced Grain Refinement in the Nanometer Scale in a Mg Alloy,” Acta Mater., 55(3), pp. 975–982. [CrossRef]
Pu, Z. , Song, G.-L. , Yang, S. , Outeiro, J. C. , Dillon, O. W. , Puleo, D. a. , and Jawahir, I. S. , 2012, “ Grain Refined and Basal Textured Surface Produced by Burnishing for Improved Corrosion Performance of AZ31B Mg Alloy,” Corros. Sci., 57, pp. 192–201. [CrossRef]
Ding, H. , and Shin, Y. C. , 2012, “ A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel,” ASME J. Manuf. Sci. Eng., 134(5), p. 051014. [CrossRef]
Estrin, Y. , Tóth, L. S. , Molinari, A. , and Bréchet, Y. , 1998, “ A Dislocation-Based Model for all Hardening Stages in Large Strain Deformation,” Acta Mater., 46(15), pp. 5509–5522. [CrossRef]
Tóth, L. S. , Molinari, A. , and Estrin, Y. , 2002, “ Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model,” ASME J. Eng. Mater. Technol., 124(1), pp. 71–77. [CrossRef]
Ding, H. , Shen, N. , and Shin, Y. C. , 2011, “ Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting,” Comput. Mater. Sci., 50(10), pp. 3016–3025. [CrossRef]
Ding, H. , and Shin, Y. C. , 2014, “ Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium,” ASME J. Manuf. Sci. Eng., 136(4), p. 041003. [CrossRef]
Ding, H. , Shen, N. , and Shin, Y. C. , 2012, “ Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling,” J. Mater. Process. Technol., 212(5), pp. 1003–1013. [CrossRef]
Wang, L. , Fan, Y. , Huang, G. , and Huang, G. , 2003, “ Flow Stress and Softening Behavior of Wrought Magnesium Alloy AZ31B at Elevated Temperature,” Trans. Nonferrous Metals Soc. China, 13(2), pp. 335–338.
Liu, J. , Cui, Z. , and Li, C. , 2008, “ Modelling of Flow Stress Characterizing Dynamic Recrystallization for Magnesium Alloy AZ31B,” Comput. Mater. Sci., 41(3), pp. 375–382. [CrossRef]
Ulacia, I. , Salisbury, C. P. , Hurtado, I. , and Worswick, M. J. , 2011, “ Tensile Characterization and Constitutive Modeling of AZ31B Magnesium Alloy Sheet Over Wide Range of Strain Rates and Temperatures,” J. Mater. Process. Technol., 211(5), pp. 830–839. [CrossRef]
Ulacia, I. , Dudamell, N. V. , Gálvez, F. , Yi, S. , Pérez-Prado, M. T. , and Hurtado, I. , 2010, “ Mechanical Behavior and Microstructural Evolution of a Mg AZ31 Sheet at Dynamic Strain Rates,” Acta Mater., 58(8), pp. 2988–2998. [CrossRef]
Li, W. , Zhao, G. , Ma, X. , and Gao, J. , 2012, “ Flow Stress Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperatures,” Int. J. Appl. Phys. Math., 2(2), pp. 83–88. [CrossRef]
Giraud, E. , Rossi, F. , Germain, G. , and Outeiro, J. C. , 2013, “ Constitutive Modelling of AZ31B-O Magnesium Alloy for Cryogenic Machining,” Procedia CIRP, 8, pp. 522–527.
Watanabe, H. , Ishikawa, K. , and Mukai, T. , 2007, “ High Strain Rate Deformation Behavior of Mg–Al–Zn Alloys at Elevated Temperatures,” Key Eng. Mater., 340–341, pp. 107–112. [CrossRef]
Sellars, C. M. , 1978, “ Recrystallization of Metals During Hot Deformation,” Philos. Trans. R. Soc. London Ser. A, 288(1350), pp. 147–158. [CrossRef]
Mcqueen, H. J. , and Jonas, J. J. , 1984, “ Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms,” J. Appl. Metalwork., 3(3), pp. 233–241. [CrossRef]
Meyers, M. A. , Vöhringer, O. , and Lubarda, V. A. , 2001, “ The Onset of Twinning in Metals: A Constitutive Description,” Acta Mater., 49(19), pp. 4025–4039. [CrossRef]
Meyers, M. A. , Benson, D. J. , Vo, O. , Kad, B. K. , and Xue, Q. , 2002, “ Constitutive Description of Dynamic Deformation: Physically-Based Mechanisms,” Mater. Sci. Eng., A322(1–2), pp. 194–216. [CrossRef]
Koike, J. , Kobayashi, T. , Mukai, T. , Watanabe, H. , Suzuki, M. , Maruyama, K. , and Higashi, K. , 2003, “ The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys,” Acta Mater., 51(7), pp. 2055–2065. [CrossRef]
Koike, J. , and Ohyama, R. , 2005, “ Geometrical Criterion for the Activation of Prismatic Slip in AZ61 Mg Alloy Sheets Deformed at Room Temperature,” Acta Mater., 53(7), pp. 1963–1972. [CrossRef]
Agnew, S. R. , and Duygulu, Ö. , 2005, “ Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B,” Int. J. Plast., 21(6), pp. 1161–1193. [CrossRef]
Keshavarz, Z. , and Barnett, M. R. , 2006, “ EBSD Analysis of Deformation Modes in Mg–3Al–1Zn,” Scr. Mater., 55(10), pp. 915–918. [CrossRef]
Li, B. , Joshi, S. , Azevedo, K. , Ma, E. , Ramesh, K. T. , Figueiredo, R. B. , and Langdon, T. G. , 2009, “ Dynamic Testing at High Strain Rates of an Ultrafine-Grained Magnesium Alloy Processed by ECAP,” Mater. Sci. Eng. A, 517(1–2), pp. 24–29. [CrossRef]
Barnett, M. R. , Keshavarz, Z. , Beer, A. G. , and Atwell, D. , 2004, “ Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn,” Acta Mater., 52(17), pp. 5093–5103. [CrossRef]
Ding, H. , and Shin, Y. C. , 2012, “ Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression,” Comput. Mater. Sci., 53(1), pp. 79–88. [CrossRef]
Shen, N. , and Ding, H. , 2014, “ Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel,” ASME J. Manuf. Sci. Eng., 136(4), p. 044504. [CrossRef]
Baik, S. C. , Estrin, Y. , Kim, H. S. , Jeong, H.-T. , and Hellmig, R. J. , 2002, “ Calculation of Deformation Behavior and Texture Evolution During Equal Channel Angular Pressing of IF Steel Using Dislocation Based Modeling of Strain Hardening,” Mater. Sci. Forum, 408–412, pp. 697–702. [CrossRef]
Hasenpouth, D. , 2010, “ Tensile High Strain Rate Behavior of AZ31B Magnesium Alloy,” M.S. thesis, University of Waterloo, Waterloo, ON, Canada.
Lemiale, V. , Estrin, Y. , Kim, H. S. , and O'Donnell, R. , 2010, “ Grain Refinement Under High Strain Rate Impact: A Numerical Approach,” Comput. Mater. Sci., 48(1), pp. 124–132. [CrossRef]
Hibbins, S. G. , 1998, “ Investigation of Heat Transfer in DC Casting of Magnesium Alloys,” International Symposium on Light Metals, pp. 265–280.
Ding, H. , and Shin, Y. C. , 2013, “ Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning,” J. Mater. Process. Technol., 213(6), pp. 877–886. [CrossRef]
Calamaz, M. , Coupard, D. , and Girot, F. , 2008, “ A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V,” Int. J. Mach. Tools Manuf., 48(3–4), pp. 275–288. [CrossRef]
Pu, Z. , Umbrello, D. , Dillon, O. W. , and Jawahir, I. S. , 2014, “ Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ31B Mg Alloy,” Procedia CIRP, 13, pp. 282–287. [CrossRef]
Bergman, T. L. , Incropera, F. P. , DeWitt, D. P. , and Lavine, A. S. , 2011, Fundamentals of Heat and Mass Transfer, Wiley, New York.
Lide, D. R. , 1994, Handbook of Chemistry and Physics, 1994 Special Student Edition, CRC Press, Boca Raton, FL.


Grahic Jump Location
Fig. 1

Microstructure in the machined surface and chip produced under condition Cryo-Re70: (a) optical microscopy, (b) SEM micrograph, (c) AFM image of machined surface, and (d) optical micrograph of chip (raw images adopted from Ref. [15])

Grahic Jump Location
Fig. 2

Dislocation density-based plasticity model predictions for Mg Alloy AZ31B compared with flow stress measurement under various conditions from Ref. [54] collected by a TSHB apparatus

Grahic Jump Location
Fig. 3

Multipass cryogenic machining simulation via advantedge

Grahic Jump Location
Fig. 4

Flowchart of the material subroutines in advantedge

Grahic Jump Location
Fig. 5

Surface and chip meshing in a two-pass simulation (condition Cryo-Re30): machined surface in (a) the first pass and (b) the second pass; (c) serrated chip formation and adaptive remeshing in the chips (color contours in plastic equivalent strain)

Grahic Jump Location
Fig. 6

Comparison of simulated results from 1-pass and 2-pass cut for condition Dry-Re70: (a) equivalent plastic strain, (b) total dislocation density, (c) grain size, and (d) change of hardness

Grahic Jump Location
Fig. 7

Simulated temperature field and cutting force histories compared with the experimental measurement for condition Cryo-Re30 (experimental data adopted from Ref. [15])

Grahic Jump Location
Fig. 8

Simulated fields under condition Cryo-Re30: (a) equivalent plastic strain, (b) total dislocation density, and (c) grain size

Grahic Jump Location
Fig. 9

Simulated profiles of (a) equivalent plastic strain, (b) total dislocation density, (c) grain size, and (d) machined subsurface micrographs from Ref. [15]

Grahic Jump Location
Fig. 10

Simulated microhardness distribution for condition Cryo-Re30 in (a) machined surface and (b) chip

Grahic Jump Location
Fig. 11

Simulated microhardness profiles compared with the experimental measurements in Ref. [15]

Grahic Jump Location
Fig. 12

Simulated circumferential residual stress fields for conditions Cryo-Re70

Grahic Jump Location
Fig. 13

Simulated residual stress profiles in depth compared with measurements in Ref. [15]

Grahic Jump Location
Fig. 14

Comparison of the predicted twinning distribution with the microstructure beneath the machined surface of Cryo-Re30 (raw images adopted from Ref. [15])




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In