0
Research Papers

Fixturing Effects in the Thermal Modeling of Laser Cladding

[+] Author and Article Information
M. F. Gouge

Autodesk Inc.,
200 Innovation Boulevard,
Suite 208, State College, PA 16803
e-mail: michael.gouge@autodesk.com

P. Michaleris

Autodesk Inc.,
200 Innovation Boulevard, Suite 208,
State College, PA 16803
e-mail: pan.michaleris@autodesk.com

T. A. Palmer

Associate Professor
Applied Research Laboratory,
Department of Material Science and Engineering,
The Pennsylvania State University,
4410D Applied Science Building,
University Park, PA 16802
e-mail: tap103@psu.edu

Manuscript received December 15, 2015; final manuscript received July 6, 2016; published online August 8, 2016. Assoc. Editor: Z. J. Pei.

J. Manuf. Sci. Eng 139(1), 011001 (Aug 08, 2016) (10 pages) Paper No: MANU-15-1666; doi: 10.1115/1.4034136 History: Received December 15, 2015; Revised July 06, 2016

Fixturing of components during laser cladding can incur significant conductive thermal losses. However, due to the surface roughness at contact, interfacial conduction is impeded. The effective contact conductivity, known as gap conductance, is much lower than the contacting material conductivities. This work investigates modeling conduction losses to fixturing bodies during laser cladding. Two laser cladding experiments are performed using contrasting fixturing schemes: one cantilevered substrate with a minimal substrate-fixture contact area and one with a substrate bolted to a work bench, with a significant substrate-fixture contact area. Using calibrated gap conductance values, error for the cantilevered fixture model decreases from 20.5% to 6.49% in the contact region, while the bench fixtured model error decreases from a range of 60–102% to 11–45%. The improvement in accuracy shows the necessity of accounting for conduction losses in the thermal modeling of laser cladding, particularly for fixturing setups with large areas of contact.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Griffith, M. L. , Keicher, D. M. , Atwood, C. L. , Romero, J. A. , Smugeresky, J. E. , Harwell, L. D. , and Greene, D. L. , 1996, “ Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS),” Solid Freeform Fabrication Proceedings, The University of Texas at Austin, Austin, TX, Vol. 9, pp. 125–131.
Mazumder, J. , Choi, J. , Nagarathnam, K. , Koch, J. , and Hetzner, D. , 1997, “ The Direct Metal Deposition of H13 Tool Steel for 3D Components,” J. Miner. Met. Mater. Soc., 49(5), pp. 55–60. [CrossRef]
Griffith, M. L. , Schlienger, M. E. , Harwell, L. D. , Oliver, M. S. , Baldwin, M. D. , Ensz, M. T. , Essien, M. , Brooks, J. , Robino, C. V. , Smugeresky, J. E. , Wert, M. J. , and Nelson, D. V. , 1999, “ Understanding Thermal Behavior in the LENS Process,” Mater. Des., 20(2–3), pp. 107–113. [CrossRef]
Heigel, J. C. , Michaleris, P. , and Palmer, T. A. , 2015, “ In Situ Monitoring and Characterization of Distortion During Laser Cladding of Inconel® 625,” J. Mater. Process. Technol., 220, pp. 135–145. [CrossRef]
Gouge, M. F. , Heigel, J. C. , Michaleris, P. , and Palmer, T. A. , 2015, “ Modeling Forced Convection in the Thermal Simulation of Laser Cladding Processes,” Int. J. Adv. Manuf. Technol., 79(1–4), pp. 307–320. [CrossRef]
Cooper, M. G. , Mikic, B. B. , and Yovanovich, M. M. , 1969, “ Thermal Contact Conductance,” Int. J. Heat Mass Transfer, 12(3), pp. 279–300. [CrossRef]
Zavarise, G. , Wriggers, P. , Stein, E. , and Schrefler, B. A. , 1992, “ Real Contact Mechanisms and Finite Element Formulation: A Coupled Thermomechanical Approach,” Int. J. Numer. Methods Eng., 35(4), pp. 767–785. [CrossRef]
Song, S. , Yovanovich, M. M. , and Goodman, F. O. , 1993, “ Thermal Gap Conductance of Conforming Surfaces in Contact,” ASME J. Heat Transfer, 115(3), pp. 533–540. [CrossRef]
Nishino, K. , Yamashita, S. , and Torii, K. , 1995, “ Thermal Contact Conductance Under Low Applied Load in a Vacuum Environment,” Exp. Therm. Fluid Sci., 10(2), pp. 258–271. [CrossRef]
Wahid, S. , and Madhusudana, C. V. , 2003, “ Thermal Contact Conductance: Effect of Overloading and Load Cycling,” Int. J. Heat Mass Transfer, 46(21), pp. 4139–4143. [CrossRef]
Gmelin, E. , Asen-Palmer, M. , Reuther, M. , and Villar, R. , 1999, “ Thermal Boundary Resistance of Mechanical Contacts Between Solids at Sub-Ambient Temperatures,” J. Phys. D: Appl. Phys., 32(6), pp. R19–R43. [CrossRef]
Kar, A. , and Mazumder, J. , 1987, “ One-Dimensional Diffusion Model for Extended Solid Solution in Laser Cladding,” J. Appl. Phys., 61(7), pp. 2645–2655. [CrossRef]
Ghosh, S. , and Choi, J. , 2006, “ Modeling and Experimental Verification of Transient/Residual Stresses and Microstructure Formation in Multi-Layer Laser Aided DMD Process,” ASME J. Heat Transfer, 128(7), pp. 662–679. [CrossRef]
Anca, A. , Fachinotti, V . D. , Escobar-Palafox, G. , and Cardona, A. , 2011, “ Computational Modelling of Shaped Metal Deposition,” Int. J. Numer. Methods Eng., 85(1), pp. 84–106. [CrossRef]
Zhu, G. , Zhang, A. , Li, D. , Tang, Y. , Tong, Z. , and Lu, Q. , 2011, “ Numerical Simulation of Thermal Behavior During Laser Direct Metal Deposition,” Int. J. Adv. Manuf. Technol., 55(9–12), pp. 945–954. [CrossRef]
Hao, M. , and Sun, Y. , 2013, “ A FEM Model for Simulating Temperature Field in Coaxial Laser Cladding of Ti6Al4V Alloy Using an Inverse Modeling Approach,” Int. J. Heat Mass Transfer, 64, pp. 352–360. [CrossRef]
Tseng, W. C. , and Aoh, J. N. , 2013, “ Simulation Study on Laser Cladding on Preplaced Powder Layer With a Tailored Laser Heat Source,” Opt. Laser Technol., 48, pp. 141–152. [CrossRef]
Hoadley, A. F. A. , and Rappaz, M. , 1992, “ A Thermal Model of Laser Cladding by Powder Injection,” Metall. Trans. B, 23(5), pp. 631–642. [CrossRef]
Hofmeister, W. , Wert, M. , Smugeresky, J. , Philliber, J. A. , Griffith, M. , and Ensz, M. , 1999, “ Investigation of Solidification in the Laser Engineered Net Shaping (LENS) Process,” J. Miner. Met. Mater. Soc., 51(7), pp. 1–6. [CrossRef]
Klingbeil, N. W. , Beuth, J. L. , Chin, R. K. , and Amon, C. H. , 2002, “ Residual Stress-Induced Warping in Direct Metal Solid Freeform Fabrication,” Int. J. Mech. Sci., 44(1), pp. 57–77. [CrossRef]
Aggarangsi, P. , Beuth, J. L. , and Gill, D. D. , 2004, “ Transient Changes in Melt Pool Size in Laser Additive Manufacturing Processes,” Solid Freeform Fabrication Proceedings, University of Texas, Austin, TX, pp. 163–174.
Wang, L. , and Felicelli, S. , 2006, “ Analysis of Thermal Phenomena in LENS Deposition,” Mater. Sci. Eng. A, 435–436, pp. 625–631. [CrossRef]
Wang, L. , and Felicelli, S. , 2007, “ Process Modeling in Laser Deposition of Multilayer SS410 Steel,” ASME J. Manuf. Sci. Eng., 129(6), pp. 1028–1034. [CrossRef]
Kamara, A. M. , Marimuthu, S. , and Li, L. , 2011, “ A Numerical Investigation Into Residual Stress Characteristics in Laser Deposited Multiple Layer Waspaloy Parts,” ASME J. Manuf. Sci. Eng., 133(3), p. 031013. [CrossRef]
Paul, R. , Anand, S. , and Gerner, F. , 2014, “ Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes,” ASME J. Manuf. Sci. Eng., 136(3), p. 031009. [CrossRef]
Michaleris, P. , and DeBiccari, A. , 1997, “ Prediction of Welding Distortion,” Weld. J. Incl. Weld. Res. Suppl., 76(4), pp. 172s–118s.
Ageorges, C. , Ye, L. , Mai, Y. W. , and Hou, M. , 1998, “ Characteristics of Resistance Welding of Lap Shear Coupons—Part I: Heat Transfer,” Compos. Part A: Appl. Sci. Manuf., 29(8), pp. 899–909. [CrossRef]
Khandkar, M. Z. H. , Khan, J. A. , and Reynolds, A. P. , 2003, “ Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model,” Sci. Technol. Weld. Joining, 8(3), pp. 165–174. [CrossRef]
Soundararajan, V. , Zekovic, S. , and Kovacevic, R. , 2005, “ Thermo-Mechanical Model With Adaptive Boundary Conditions for Friction Stir Welding of Al 6061,” Int. J. Mach. Tools Manuf., 45(14), pp. 1577–1587. [CrossRef]
Colegrove, P. A. , Shercliff, H. R. , and Zettler, R. , 2007, “ Model for Predicting Heat Generation and Temperature in Friction Stir Welding From the Material Properties,” Sci. Technol. Weld. Joining, 12(4), pp. 284–297. [CrossRef]
Li, T. , Shi, Q. Y. , and Li, H.-K. , 2007, “ Residual Stresses Simulation for Friction Stir Welded Joint,” Sci. Technol. Weld. Joining, 12(8), pp. 664–670. [CrossRef]
Awang, M. , and Mucino, V . H. , 2010, “ Energy Generation During Friction Stir Spot Welding (FSSW) of Al 6061-T6 Plates,” Mater. Manuf. Process., 25(1–3), pp. 167–174. [CrossRef]
Hamilton, C. , Dymek, S. , and Sommers, A. , 2008, “ A Thermal Model of Friction Stir Welding in Aluminum Alloys,” Int. J. Mach. Tools Manuf., 48(10), pp. 1120–1130. [CrossRef]
Zain-ul Abdein, M. , Nelias, D. , Jullien, J. F. , and Deloison, D. , 2009, “ Prediction of Laser Beam Welding-Induced Distortions and Residual Stresses by Numerical Simulation for Aeronautic Application,” J. Mater. Process. Technol., 209(6), pp. 2907–2917. [CrossRef]
Yu, M. , Li, W. Y. , Li, J. L. , and Chao, Y. J. , 2012, “ Modelling of Entire Friction Stir Welding Process by Explicit Finite Element Method,” Mater. Sci. Technol., 28(7), pp. 812–817. [CrossRef]
Wang, H. , Colegrove, P. A. , and Mehnen, J. , 2014, “ Hybrid Modelling of the Contact Gap Conductance Heat Transfer in Welding Process,” Adv. Eng. Software, 68, pp. 19–24. [CrossRef]
Li, H. , and Liu, D. , 2014, “ Simplified Thermo-Mechanical Modeling of Friction Stir Welding With a Sequential FE Method,” Int. J. Model. Optim., 4(5), pp. 410–416. [CrossRef]
Mughal, M. P. , Fawad, H. , and Mufti, R. A. , 2006, “ Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping,” Proc. Inst. Mech. Eng., Part C, 220(6), pp. 875–885. [CrossRef]
Michaleris, P. , 2014, “ Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes,” Finite Elem. Anal. Des., 86, pp. 51–60. [CrossRef]
Special Metals, 2006, “ Inconel Alloy 625,” Technical Report No. SMC-063.
Matweb, 2014, “ Constellium Alplan 6061 Rolled Precision Aluminum Plate, Milled Both Sides,” Technical Report No. 160267.
Matweb, 2014, “ ASTM A36 Steel, Plate,” Technical Report No. 14017.
Matweb, 2014, “ AISI 1018 Steel, Cold Drawn, High Temperature, Stress Relieved, 16-22 mm (0.625-0.875 in) Round,” Technical Report. No. 6817.
Allegheny Ludlum Corporation, 1998, “ Technical Data Blue Sheet: Stainless Steels,” Technical Report No. B107/ED19/1298/SW.
Chang, P. H. , and Teng, T. L. , 2004, “ Numerical and Experimental Investigations on the Residual Stresses of the Butt-Welded Joints,” Comput. Mater. Sci., 29(4), pp. 511–522. [CrossRef]
Omega Engineering, 1998, Non-Contact Temperature Measurement, 2nd ed., Vol. 1, Omega Engineering, Stamford, CT.
MIKRON, 2014, “ Table of Emissivity of Various Surfaces,” Technical Report No. 2.
Floreen, S. , Fuchs, G. E. , and Yang, W. J. , 1994, “ The Metallurgy of Alloy 625,” Superalloys, 718(625), pp. 13–37.
Denlinger, E. R. , Irwin, J. , and Michaleris, P. , 2014, “ Thermomechanical Modeling of Additive Manufacturing Large Parts,” ASME J. Manuf. Sci. Eng., 136(6), p. 061007. [CrossRef]
Goldak, J. , Chakravarti, A. , and Bibby, M. , 1984, “ A New Finite Element Model for Welding Heat Sources,” Metall. Trans. B, 15(2), pp. 299–305. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Illustration of microsurface contact and microcavities

Grahic Jump Location
Fig. 2

Cantilevered cladding experimental setup

Grahic Jump Location
Fig. 3

Work bench cladding experimental setup

Grahic Jump Location
Fig. 4

Cantilevered TC location schematic: (a) substrate top surface and (b) substrate bottom surface

Grahic Jump Location
Fig. 5

Bench TC location schematic: (a) substrate top surface and (b) substrate bottom surface

Grahic Jump Location
Fig. 6

Substrate only FE mesh

Grahic Jump Location
Fig. 7

Cantilevered FE mesh

Grahic Jump Location
Fig. 8

Work bench FE mesh

Grahic Jump Location
Fig. 9

Forced convection as an axisymmetric function from the laser heat source center

Grahic Jump Location
Fig. 10

Cantilevered gap conductance FE mesh

Grahic Jump Location
Fig. 11

Cantilevered gap conductance FE mesh

Grahic Jump Location
Fig. 12

Comparison of simulated versus experimental temperatures at TC1–TC5, cantilevered cladding: (a) TC1, (b) TC2, (c) TC3, (d) TC4, and (e) TC5

Grahic Jump Location
Fig. 13

Comparison of simulated versus experimental temperatures at TC1–TC4, bench cladding: (a) TC1, (b) TC2, (c) TC3, and (d) TC4

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In