0
Review Article

Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming

[+] Author and Article Information
Dorel Banabic

CERTETA Research Center,
Technical University of Cluj Napoca,
Cluj Napoca 400114, Romania
e-mail: banabic@tcm.utcluj.ro

Manuscript received October 25, 2015; final manuscript received June 9, 2016; published online July 19, 2016. Assoc. Editor: Edmund Chu.

J. Manuf. Sci. Eng 138(9), 090801 (Jul 19, 2016) (9 pages) Paper No: MANU-15-1532; doi: 10.1115/1.4033879 History: Received October 25, 2015; Revised June 09, 2016

In the last decades, numerical simulation has gradually extended its applicability in the field of sheet metal forming. Constitutive modeling and formability are two domains closely related to the development of numerical simulation tools. This paper is focused, on the one hand, on the presentation of new phenomenological yield criteria developed in the last decade, which are able to describe the anisotropic response of sheet metals, and, on the other hand, on new models and experiments to predict/determine the forming limit curves.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Banabic, D. , 2000, “ Anisotropy of Sheet Metal,” Formability of Metallic Materials, D. Banabic , ed., Springer Verlag, Heidelberg, Germany, pp. 119–172.
Barlat, F. , Banabic, D. , and Cazacu, O. , 2002, “ Anisotropy in Sheet Metals,” Numerical Simulation of 3-D Sheet Metal Forming Processes, D. Y. Yang , ed., Korea Advanced Inst. of Science and Technology (KAIST), Jeju Island, South Korea, pp. 515–524.
Barlat, F. , Cazacu, O. , Zyczkowski, M. , Banabic, D. , and Yoon, J.-W. , 2004, “ Yield Surface Plasticity and Anisotropy,” Continuum Scale Simulation of Engineering Materials, D. Raabe , L.-Q. Chen , F. Barlat , and F. Roters , eds., Wiley-VCH, Weinheim, Germany, pp. 145–185.
Banabic, D. , and Tekkaya, E. A. , 2006, “ Forming Simulation,” Virtual Fabrication of Aluminum Alloys, J. Hirsch , ed., Wiley-VCH, Weinheim, Germany, pp. 275–302.
Banabic, D. , Barlat, F. , Cazacu, O. , and Kuwabara, T. , 2007, “ Anisotropy and Formability,” Advances in Material Forming-ESAFORM 10 Years On, F. Chinesta and E. Cueto , eds., Springer, Heidelberg, Germany, pp. 143–173.
Banabic, D. , 2010, Sheet Metal Forming Processes, Springer, Heidelberg (in Chinese, Science Press, Beijing, 2015).
Banabic, D. , Barlat, F. , Cazacu, O. , and Kuwabara, T. , 2010, “ Advances in Anisotropy and Formability,” Int. J. Mater. Form., 3(3), pp. 165–189. [CrossRef]
Lee, M. G. , and Barlat, F. , 2014, “ Modeling of Plastic Yielding, Anisotropic Flow and the Bauschinger Effect,” Comprehensive Materials Processing, S. Hashmi , ed., Elsevier, Amsterdam, The Netherlands, pp. 235–260.
Brosius, A. , and Banabic, D. , 2014, “ Anisotropy,” Encyclopedia of Production Engineering, L. Laperrière and G. Reinhart , eds., Springer, Heidelberg, Berlin, Germany, pp. 40–47.
Banabic, D. , 2014, “ Fliessortkriteria,” Blechumformtechnik, K. Siegert , ed., Springer, Heidelberg, Berlin, Germany.
Bruschi, S. , Altan, T. , Banabic, D. , Bariani, P. F. , Brosius, A. , Cao, J. , Ghiotti, A. , Khraisheh, M. , Merklein, M. , and Tekkaya, E. , 2014, “ Testing and Modeling of Material Behavior and Formability in Sheet Metal Forming Processes (Keynote Paper),” Ann. CIRP, 63(2), pp. 727–749. [CrossRef]
Hill, R. , 1948, “ A Theory of the Yielding and Plastic Flow of Anisotropic Metals,” Proc. R. Soc. London, Ser. A, 193(1033), pp. 281–297. [CrossRef]
Woodthrope, J. , and Pearce, R. , 1970, “ Anomalous Behaviour of Aluminium Sheet Under Balanced Biaxial Tension,” Int. J. Mech. Sci., 12(4), pp. 341–347. [CrossRef]
Hill, R. , 1979, “ Theoretical Plasticity of Textured Aggregates,” Math. Proc. Cambridge Philos. Soc., 85(1), pp. 179–191. [CrossRef]
Hill, R. , 1990, “ Constitutive Modelling of Orthotropic Plasticity in Sheet Metals,” J. Mech. Phys. Solids, 38(3), pp. 405–417. [CrossRef]
Hill, R. , 1993, “ A User-Friendly Theory of Orthotropic Plasticity in Sheet Metals,” Int. J. Mech. Sci., 35(1), pp. 19–25. [CrossRef]
Hershey, A. V. , 1954, “ The Plasticity of an Isotropic Aggregate of Anisotropic Face Centred Cubic Crystals,” ASME J. Appl. Mech., 21, pp. 241–249.
Hosford, W. F. , 1979, “ On Yield Loci of Anisotropic Cubic Metals,” 7th North American Metalworking Conference, Dearborn, MI, pp. 191–197.
Logan, R. W. , and Hosford, W. F. , 1980, “ Upper-Bound Anisotropic Yield Locus Calculations Assuming Pencil Glide,” Int. J. Mech. Sci., 22(7), pp. 419–430. [CrossRef]
Barlat, F. , and Lian, J. , 1989, “ Plastic Behavior and Stretchability of Sheet Metals. Part 1: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions,” Int. J. Plast., 5(1), pp. 51–56. [CrossRef]
Gotoh, M. , 1977, “ Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State),” Int. J. Mech. Sci., 19(9), pp. 505–512. [CrossRef]
Budiansky, B. , 1984, “ Anisotropic Plasticity of Plane-Isotropic Sheets,” Mechanics of Material Behaviour, G. J. Dvorak and R. T. Shield , eds., Elsevier, Amsterdam, The Netherlands, pp. 15–29.
Tourki, Z. , Makkouk, R. , Zeghloul, A. , and Ferron, G. , 1994, “ Orthotropic Plasticity in Sheet Metals,” J. Mater. Processes Technol., 45(1–4), pp. 453–458. [CrossRef]
Barlat, F. , Lege, D. J. , and Brenz, J. C. , 1991, “ A 6-Component Yield Function for Anisotropic Materials,” Int. J. Plast., 7(7), pp. 693–712. [CrossRef]
Barlat, F. , Becker, R. C. , Hayashida, Y. , Maeda, Y. , Yanagawa, M. , Chung, K. , Brem, J. C. , Lege, D. J. , Matsui, K. , Murtha, S. J. , and Hattori, S. , 1997, “ Yielding Description of Solution Strengthened Aluminum Alloys,” Int. J. Plast., 13(4), pp. 185–401. [CrossRef]
Barlat, F. , Maeda, Y. , Chung, K. , Yanagawa, M. , Brem, J. C. , Hayashida, Y. , Lege, D. J. , Matsui, K. , Murtha, S. J. , Hattori, S. , Becker, R. C. , and Makosey, S. , 1997, “ Yield Function Development for Aluminum Alloy Sheets,” J. Mech. Phys. Solids, 45(11–12), pp. 1727–1763. [CrossRef]
Karafillis, A. P. , and Boyce, M. C. , 1993, “ A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor,” J. Mech. Phys. Solids, 41(12), pp. 1859–1886. [CrossRef]
Bron, F. , and Besson, J. , 2004, “ A Yield Function for Anisotropic Materials,” Int. J. Plast., 20(4–5), pp. 937–963. [CrossRef]
Barlat, F. , Brem, J. C. , Yoon, J. W. , Chung, K. , Dick, R. E. , Lege, D. J. , Pourboghrat, F. , Choi, S.-H. , and Chu, E. , 2003, “ Plane Stress Yield Function for Aluminium Alloy Sheets: Formulation,” Int. J. Plast., 19(9), pp. 1297–1319. [CrossRef]
Barlat, F. , Aretz, H. , Yoon, J. W. , Karabin, M. E. , Brem, J. C. , and Dick, R. E. , 2005, “ Linear Transformation-Based Anisotropic Yield Functions,” Int. J. Plast., 21(5), pp. 1009–1039. [CrossRef]
Aretz, H. , and Barlat, F. , 2013, “ New Convex Yield Functions for Orthotropic Metal Plasticity,” Int. J. Non-Linear Mech., 51, pp. 97–111. [CrossRef]
Yoon, J. W. , Barlat, F. , Dick, R. E. , and Karabin, M. E. , 2006, “ Prediction of Six or Eight Ears in a Drawn Cup Based on a New Anisotropic Yield Function,” Int. J. Plast., 22(1), pp. 174–193. [CrossRef]
Cazacu, O. , and Barlat, F. , 2001, “ Generalization of Drucker's Yield Criterion to Orthotropy,” Math. Mech. Solids, 6(6), pp. 613–630. [CrossRef]
Drucker, D. C. , 1949, “ Relation of Experiments to Mathematical Theories of Plasticity,” ASME J. Appl. Mech., 16, pp. 349–357.
Cazacu, O. , and Barlat, F. , 2003, “ Application of the Theory of Representation to Describe Yielding of Anisotropic Aluminum Alloys,” Int. J. Eng. Sci., 41(12), pp. 1367–1385. [CrossRef]
Liu, C. , Huang, Y. , and Stout, M. G. , 1997, “ On the Asymmetric Yield Surface of Plastically Orthotropic Materials: A Phenomenological Study,” Acta Mater., 45(6), pp. 2397–2406. [CrossRef]
Cazacu, O. , Plunkett, B. , and Barlat, F. , 2006, “ Orthotropic Yield Criterion for Hexagonal Close Packed Metals,” Int. J. Plast., 22(7), pp. 1171–1194. [CrossRef]
Vegter, H. , Drent, P. , and Huetink, J. , 1988, “ A Planar Isotropic Yield Criterion Based on Material Testing at Multiaxial Stress State,” Simulation of Materials Processing: Theory, Methods and Applications, S. F. Shen and P. R. Dawson , eds., Balkema, Rotterdam, The Netherlands, pp. 345–350.
Vegter, H. , and van den Boogaard, A. H. , 2006, “ A Yield Function for Anisotropic Sheet Material by Interpolation of Biaxial Stress States,” Int. J. Plast., 22(3), pp. 557–580. [CrossRef]
Hill, R. , 1950, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK.
Comsa, D. S. , and Banabic, D. , 2007, “ Numerical Simulation of Sheet Metal Forming Processes Using a New Yield Criterion,” Key Eng. Mater., 344, pp. 833–840. [CrossRef]
Soare, S. , Yoon, J. W. , and Cazacu, O. , 2008, “ On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions With Applications to Sheet Forming,” Int. J. Plast., 24(6), pp. 915–924. [CrossRef]
Banabic, D. , Aretz, H. , Comsa, D. S. , and Paraianu, L. , 2005, “ An Improved Analytical Description of Orthotropy in Metallic Sheets,” Int. J. Plast., 21(3), pp. 493–512. [CrossRef]
Banabic, D. , Comsa, D. S. , and Balan, T. , 2000, “ A New Yield Criterion for Orthotropic Sheet Metals Under Plane Stress Conditions,” 7th TPR 2000 Conference, May 11–12, D. Banabic , ed., Printek Publishing House, Cluj Napoca, Romania, pp. 217–224.
Banabic, D. , Kuwabara, T. , Balan, T. , Comsa, D. S. , and Julean, D. , 2003, “ Non-Quadratic Yield Criterion for Orthotropic Sheet Metals Under Plane-Stress Conditions,” Int. J. Mech. Sci., 45(5), pp. 797–811. [CrossRef]
Banabic, D. , and Sester, M. , 2012, “ Influence of Material Models on the Accuracy of the Sheet Forming Simulation,” Mater. Manuf. Processes, 27, pp. 304–308. [CrossRef]
Lăzărescu, L. , Ciobanu, I. , Nicodim, I. , Comşa, D. S. , and Banabic, D. , 2013, “ Effect of the Mechanical Parameters Used as Input Data in the Yield Criteria on the Accuracy of the FE Simulation of Sheet Metal Forming Processes,” Key Eng. Mater., 554–557, pp. 204–209. [CrossRef]
Comsa, D. S. , and Banabic, D. , 2008, “ Plane-Stress Yield Criterion for Highly-Anisotropic Sheet Metals,” Numisheet 2008 Conference, Interlaken, Switzerland, Sept. 1–5, pp. 43–48.
Barlat, F. , and Richmond, O. , 1987, “ Prediction of Tricomponent Plane Stress Yield Surfaces and Associated Flow and Failure Behaviour of Strongly Textured FCC Polycrystalline Sheets,” Mater. Sci. Eng., 91, pp. 15–29. [CrossRef]
Vrh, M. , Halilovič, M. , Starman, B. , Štok, B. , Comsa, D. S. , and Banabic, D. , 2011, “ Earing Prediction in Cup Drawing Using the BBC2008 Yield Criterion,” AIP Conf. Proc., 1383, pp. 142–150.
Gawad, J. , Banabic, D. , Van Bael, A. , Comsa, D. S. , Gologanu, M. , Eyckens, P. , Van Houtte, P. , and Roose, D. , 2015, “ An Evolving Plane Stress Yield Criterion Based on Crystal Plasticity Virtual Experiments,” Int. J. Plast., 75, pp. 141–169. [CrossRef]
Van Houtte, P. , Saiyi, L. , Seefeld, M. , and Delannay, L. , 2005, “ Deformation Texture Prediction: From the Taylor Model to the Advanced Lamel Model,” Int. J. Plast., 21(3), pp. 589–624. [CrossRef]
Lian, J. , Barlat, F. , and Baudelet, B. , 1989, “ Plastic Behaviour and Stretchability of Sheet Metals: Effect of Yield Surface Shape on Sheet Forming Limit,” Int. J. Plast., 5(2), pp. 131–147. [CrossRef]
Paraianu, L. , Comsa, D. S. , Ciobanu, I. I. , and Banabic, D. , 2012, “ Effect of the Constitutive Law on the Accuracy of Prediction of the Forming Limit Curves,” Key Eng. Mater., 504–506, pp. 77–82. [CrossRef]
Jurco, P. , and Banabic, D. , 2005, “ A User-Friendly Programme for Calculating Forming Limit Diagrams,” 8th ESAFORM Conference, D. Banabic , ed., The Publishing House of the Romanian Academy, Bucharest, Romania, pp. 423–427.
Gologanu, M. , Comsa, D. S. , and Banabic, D. , 1913, “ Theoretical Model for Forming Limit Diagram Predictions Without Initial Inhomogeneity,” AIP Conf. Proc., 1532, pp. 245–253.
Kami, A. , Dariani, B. M. , Vanini, A. S. , Comsa, D. S. , and Banabic, D. , 2015, “ Numerical Determination of the Forming Limit Curves of Anisotropic Sheet Metals Using GTN Damage Model,” J. Mater. Process. Technol., 216, pp. 472–483. [CrossRef]
Hora, P. , Tong, L. , and Berisha, B. , 2013, “ Modified Maximum Force Criterion, a Model for the Theoretical Prediction of Forming Limit Curves,” Int. J. Mater. Form., 6(2), pp. 267–279. [CrossRef]
Banabic, D. , Lazarescu, L. , Paraianu, L. , Ciobanu, I. , Nicodim, I. , and Comsa, D. S. , 2013, “ Development of a New Procedure for the Experimental Determination of the Forming Limit Curves,” Ann. CIRP, 62(1), pp. 255–258. [CrossRef]
Barlat, F. , Gracio, J. J. , Lee, M.-G. , Rauch, E. F. , and Vincze, G. , 2014, “ An Alternative to Kinematic Hardening in Classical Plasticity,” Int. J. Plast., 27(9), pp. 1309–1327. [CrossRef]
Barlat, F. , Vincze, G. , Grácio, J. J. , Lee, M.-G. , Rauch, E. F. , and Tomé, C. N. , 2014, “ Enhancements of Homogenous Anisotropic Hardening Model and Application to Mild and Dual-Phase Steels,” Int. J. Plast., 58, pp. 201–218. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Yield loci predicted by using different versions of the BBC2005 model for AA6016-T4 aluminum alloy

Grahic Jump Location
Fig. 2

Comparison between FE simulation and experiment for thickness-strain distribution

Grahic Jump Location
Fig. 3

Normalized yield surface predicted by BBC2008 model for AA2090-T3 aluminum alloy

Grahic Jump Location
Fig. 4

Planar distribution of the uniaxial yield stress predicted by BBC2008 model for AA2090-T3 aluminum alloy

Grahic Jump Location
Fig. 5

Planar distribution of the r-coefficient predicted by BBC2008 model for AA2090-T3 aluminum alloy

Grahic Jump Location
Fig. 6

Earing prediction for aluminum AA2090-T3: (a) simulation and (b) ears profile

Grahic Jump Location
Fig. 7

HMS computational plasticity framework

Grahic Jump Location
Fig. 8

Comparison of experimental and predicted cup profiles using BBC 2008 model identified by mechanical testing and using the evolving anisotropy HMS-BBC 2008 (Reprinted from Gawad et al., 2015 [51] with permission from Elsevier)

Grahic Jump Location
Fig. 9

Numerical FLD predictions for Gologanu model: LA necking model versus M–K model (Reprinted from Gologanu et al., 1913 [57] with permission from AIP)

Grahic Jump Location
Fig. 10

Comparison between the FLC obtained by different methods (Reprinted from Kami et al., 2015 [57] with permission from Elsevier)

Grahic Jump Location
Fig. 11

Schematic view of the new formability test (Reprinted from Banabic et al., 2013 [59] with permission from Elsevier)

Grahic Jump Location
Fig. 12

Forming limit diagram of the AA6016-T4 alloy (Reprinted from Banabic et al., 2013 [59] with permission from Elsevier)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In