0
Review Article

A Review on Electromechanical Devices Fabricated by Additive Manufacturing

[+] Author and Article Information
John O'Donnell

Department of Mechanical Engineering,
The University of Alabama,
Box 870276,
Tuscaloosa, AL 35487-0276
e-mail: jlodonnell@crimson.ua.edu

Myungsun Kim

Department of Mechanical Engineering,
The University of Alabama,
Box 870276,
Tuscaloosa, AL 35487-0276
e-mail: mnkim@crimson.ua.edu

Hwan-Sik Yoon

Department of Mechanical Engineering,
The University of Alabama,
Box 870276,
Tuscaloosa, AL 35487-0276
e-mail: hyoon@eng.ua.edu

1Corresponding author.

Manuscript received September 2, 2015; final manuscript received June 1, 2016; published online August 9, 2016. Editor: Y. Lawrence Yao.

J. Manuf. Sci. Eng 139(1), 010801 (Aug 09, 2016) (10 pages) Paper No: MANU-15-1452; doi: 10.1115/1.4033758 History: Received September 02, 2015; Revised June 01, 2016

Additive manufacturing (AM) for mechanical devices and electronic components has been actively researched recently. While manufacturing of those mechanical and electronic devices has their own merits, combining them into a single form is expected to grow by creating new applications in the future. The so-called all-printed electromechanical devices have potential applications in mechanical, electrical, and biomedical engineering. In this paper, the recent advancement in all-printed electromechanical devices is reviewed. A brief introduction to various AM techniques is presented first. Then, various examples of sensors, electronics, and electromechanical devices created by AM are reviewed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Weller, C. , Kleer, R. , and Piller, F. T. , 2015, “ Economic Implications of 3D printing: Market Structure Models in Light of Additive Manufacturing Revisited,” Int. J. Prod. Econ., 164(0), pp. 43–56. [CrossRef]
ISO/ASTM, 2015, “ Additive manufacturing — General principles—Terminology,” General Terms, International Organization for Standardization, Geneva, Switzerland, Standard No. ISO/ASTM 52900:2015(en).
MacCurdy, R. , McNicoll, A. , and Lipson, H. , 2014, “ Bitblox: Printable Digital Materials for Electromechanical Machines,” Int. J. Rob. Res., 33(10), pp. 1342–1360. [CrossRef]
Lifton, V. A. , Lifton, G. , and Simon, S. , 2014, “ Options for Additive Rapid Prototyping Methods (3D printing) in MEMS Technology,” Rapid Prototyping J., 20(5), pp. 403–412. [CrossRef]
Espalin, D. , Muse, D. , MacDonald, E. , and Wicker, R. , 2014, “ 3D Printing Multifunctionality: Structures With Electronics,” Int. J. Adv. Manuf. Technol., 72(5–8), pp. 963–978. [CrossRef]
Aguilera, E. , Ramos, J. , Espalin, D. , Cedillos, F. , Muse, D. , Wicker, R. , and MacDonald, E. , 2013, “ 3D Printing of Electro Mechanical Systems,” Solid Freeform Fabrication Symposium, pp. 950–961.
Binnard, M. , Cutkosky, M. , Losleben, P. , Merz, R. , Prinz, F. , Rajagopalan, S. , Wood, W. , Finger, S. , Gupta, S. , and Weiss, L. , 1996, “ A Design Interface for 3D Manufacturing,” proposal to National Science Foundation and the U.S. Defense Advanced Research Projects Agency.
Wu, S.-Y. , Yang, C. , Hsu, W. , and Lin, L. , 2015, “ 3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors,” Microsystems & Nanoengineering, 1, p. 15013.
Herderick, E. , 2015, “ Progress in Additive Manufacturing,” JOM, 67(3), pp. 580–581. [CrossRef]
Gibson, I. , Rosen, D. W. , and Stucker, B. , 2015, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer-Verlag, New York.
Crump, S. S. M. , 1992, “ Apparatus and Method for Creating Three-Dimensional Objects,” Stratasys, Minneapolis, MN.
Zein, I. , Hutmacher, D. W. , Tan, K. C. , and Teoh, S. H. , 2002, “ Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications,” Biomaterials, 23(4), pp. 1169–1185. [CrossRef] [PubMed]
Jafari, M. A. , Han, W. , Mohammadi, F. , Safari, A. , Danforth, S. C. , and Langrana, N. , 2000, “ A Novel System for Fused Deposition of Advanced Multiple Ceramics,” Rapid Prototyping J., 6(3), pp. 161–175. [CrossRef]
Church, K. H. O. , Clark, P. A. , Chen, X. , Owens, M. W. , and Stone, K. M. , 2010, “ Dispensing Patterns Including Lines and Dots at High Speeds,” nScrypt, Orlando, FL.
Wallace, D. B. , Royall Cox, W. , and Hayes, D. J. , 2002, “ Chapter 7—Direct Write Using Ink-Jet Techniques A2—Piqué, Alberto,” Direct-Write Technologies for Rapid Prototyping, Academic Press, San Diego, CA, pp. 177–227.
Sampath, S. , Longtin, J. , Gambino, R. , Herman, H. , Greenlaw, R. , and Tormey, E. , 2002, “ Chapter 9—Direct-Write Thermal Spraying of Multilayer Electronics and Sensor Structures A2—Piqué, Alberto,” Direct-Write Technologies for Rapid Prototyping, Academic Press, San Diego, CA, pp. 261–302.
Fitz-Gerald, J. M. , Rack, P. D. , Ringeisen, B. , Young, D. , Modi, R. , Auyeung, R. , and Wu, H.-D. , 2002, “ Chapter 17—Matrix Assisted Pulsed Laser Evaporation-Direct Write (Maple-Dw): A New Method to Rapidly Prototype Organic and Inorganic Materials A2—Piqué, Alberto,” Direct-Write Technologies for Rapid Prototyping, Academic Press, San Diego, CA, pp. 517–553.
Edinger, K. , 2002, “ Chapter 12—Focused Ion Beams for Direct Writing A2—Piqué, Alberto,” Direct-Write Technologies for Rapid Prototyping, Academic Press, San Diego, CA, pp. 347–383.
Peckerar, M. C. , Bass, R. , Rhee, K. W. , and Marrian, C. R. K. , 2002, “ Chapter 11—Nanolithography With Electron Beams: Theory and Practice A2—Piqué, Alberto,” Direct-Write Technologies for Rapid Prototyping, Academic Press, San Diego, CA, pp. 313–346.
He, Z. , Zhou, J. G. , and Tseng, A. A. , 2000, “ Feasibility Study of Chemical Liquid Deposition Based Solid Freeform Fabrication,” Mater. Des., 21(2), pp. 83–92. [CrossRef]
Helvajian, H. , 2002, “ Chapter 14—3D Microengineering Via Laser Direct-Write Processing Approaches A2—Piqué, Alberto,” Direct-Write Technologies for Rapid Prototyping, Academic Press, San Diego, CA, pp. 415–474.
King, B. H. A. , 2014, “ Miniature Aerosol Jet and Aerosol Jet Array,” Optomec, Albuquerque, NM.
Fitz-Gerald, J. M. , Chrisey, D. B. , Piqu, A. , Auyeung, R. C. Y. , Mohdi, R. , Young, H. D. , Wu, H. D. , Lakeou, S. , and Chung, R. , 2000, “ Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE DW): A New Method to Rapidly Prototype Active and Passive Electronic Circuit Elements,” MRS Online Proc. Libr. Arch., 625, pp. 99–110. [CrossRef]
Sampath, S. , Herman, H. , and Greenlaw, R. , 2002, “ Method and Apparatus for Fine Feature Spray Deposition,” Patent No. WO 2002007952 A3.
Sampath, S. , Herman, H. , Patel, A. , Gambino, R. , Greenlaw, R. , and Tormey, E. , 2000, “ Thermal Spray Techniques for Fabrication of Meso-Electronics and Sensors,” MRS Online Proc. Libr. Arch., 624, pp. 181–188. [CrossRef]
Nassar, R. , and Dai, W. , 2003, “ Laser Chemical Vapor Deposition,” Modelling of Microfabrication Systems, Springer, Berlin, Heidelberg, pp. 77–121.
Gavish, I. , and Greenzweig, Y. , 2003, “ Focused Ion Beam Deposition,” Patent No. U.S. 20060252255 A9.
Zhou, J. G. , Addison, A. , He, Z. , and Wang, F. , 2005, “ Chemical Liquid Deposition Process for Microstructure Fabrication,” Mater. Des., 26(8), pp. 670–679. [CrossRef]
Deckard, C. R. A. , 1989, “ Method and Apparatus for Producing Parts by Selective Sintering,” Patent No. U.S. 4863538 A.
Kruth, J. P. , Mercelis, P. , Vaerenbergh, J. V. , Froyen, L. , and Rombouts, M. , 2005, “ Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping J., 11(1), pp. 26–36. [CrossRef]
McAlea, K. P. , Forderhase, P. F. , Ganninger, M. E. , Kunig, F. W. , and Magistro, A. J. , 1998, “ Selective Laser Sintering With Composite Plastic Material,” Patent No. U.S. 5733497 A.
Jeantette, F. P. , Keicher, D. M. , Romero, J. A. , and Schanwald, L. P. , 2000, “ Method and System for Producing Complex-Shape Objects,” Patent No. U.S. 6046426 A.
Martin, R. E. , and Hofmeister, W. H. , 2010, “ Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes,” Patent No. WO 2010117863 A1.
Sachs, E. M. S. , Haggerty, J. S. , Cima, M. J. , and Williams, P. A. , 1993, “ Three-Dimensional Printing Techniques,” Massachusetts Institute of Technology, Cambridge, MA.
Hull, C. W. A. , 1986, “ Apparatus for Production of Three-Dimensional Objects by Stereolithography,” UVP, San Gabriel, CA.
Zhou, C. , Chen, Y. , Yang, Z. , and Khoshnevis, B. , 2013, “ Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography,” Rapid Prototyping J., 19(3), pp. 153–165. [CrossRef]
Swanson, W. K. , and Kremer, S. D. , 1978, “ Three Dimensional Systems,” Patent No. 4078229.
Sun, H.-B. , and Kawata, S. , 2004, “ Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” NMR 3D Analysis Photopolymerization, Springer, Berlin, Heidelberg, pp. 169–273.
Feygin, M. , 1988, “ Apparatus and Method for Forming an Integral Object From Laminations,” Patent No. U.S. 5354414 A.
Feygin, M. , Shkolnik, A. , Diamond, M. N. , and Dvorskiy, E. , 1998, “ Laminated Object Manufacturing System,” Patent No. U.S. 5730817 A.
Himmer, T. , Nakagawa, T. , and Anzai, M. , 1999, “ Lamination of Metal Sheets,” Comput. Ind., 39(1), pp. 27–33. [CrossRef]
Yi, S. , Liu, F. , Zhang, J. , and Xiong, S. , 2004, “ Study of the Key Technologies of LOM for Functional Metal Parts,” J. Mater. Process. Technol., 150(1–2), pp. 175–181. [CrossRef]
White, D. , 2003, “ Ultrasonic Object Consolidation,” Patent No. U.S. 6519500 B1.
Dapino, M. J. , 2014, “ Smart Structure Integration Through Ultrasonic Additive Manufacturing,” ASME Paper No. SMASIS2014-7710.10.
Khan, S. , Lorenzelli, L. , and Dahiya, R. S. , 2015, “ Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review,” IEEE Sens. J., 15(6), pp. 3164–3185. [CrossRef]
Michelis, F. , Bodelot, L. , Bonnassieux, Y. , and Lebental, B. , 2015, “ Highly Reproducible, Hysteresis-Free, Flexible Strain Sensors by Inkjet Printing of Carbon Nanotubes,” Carbon, 95, pp. 1020–1026. [CrossRef]
Reig, C. , and Avila-Navarro, E. , 2014, “ Printed Antennas for Sensor Applications: A Review,” IEEE Sens. J., 14(8), pp. 2406–2418. [CrossRef]
Shemelya, C. , Cedillos, F. , Aguilera, E. , Espalin, D. , Muse, D. , Wicker, R. , and MacDonald, E. , 2015, “ Encapsulated Copper Wire and Copper Mesh Capacitive Sensing for 3-D Printing Applications,” IEEE Sens. J., 15(2), pp. 1280–1286. [CrossRef]
Leigh, S. J. , Bradley, R. J. , Purssell, C. P. , Billson, D. R. , and Hutchins, D. A. , 2012, “ A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors,” PLoS ONE, 7(11), p. e49365. [CrossRef] [PubMed]
Da, Z. , Tao, L. , Mei, Z. , Richard, L. , and Ben, W. , 2012, “ Fabrication and Characterization of Aerosol-Jet Printed Strain Sensors for Multifunctional Composite Structures,” Smart Mater. Struct., 21(11), p. 115008. [CrossRef]
Thompson, B. , and Yoon, H.-S. , 2013, “ Aerosol-Printed Strain Sensor Using PEDOT:PSS,” IEEE Sens. J., 13(11), pp. 4256–4263. [CrossRef]
Hayat, A. , and Marty, J. L. , 2014, “ Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring,” Sensors (Basel), 14(6), pp. 10432–10453. [CrossRef] [PubMed]
Ricciardella, F. , Alfano, B. , Loffredo, F. , Villani, F. , Polichetti, T. , Miglietta, M. L. , Massera, E. , and Francia, G. D. , “ Inkjet Printed Graphene-Based Chemi-Resistors for Gas Detection in Environmental Conditions,” AISEM Annual Conference, 2015 XVIII, pp. 1–4.
Dankoco, M. D. , Tesfay, G. Y. , Benevent, E. , and Bendahan, M. , 2016, “ Temperature Sensor Realized by Inkjet Printing Process on Flexible Substrate,” Mater. Sci. Eng. B, 205, pp. 1–5. [CrossRef]
Lee, C.-H. , Chuang, W.-Y. , Cowan, M. , Wu, W.-J. , and Lin, C.-T. , 2014, “ A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology,” Sensors, 14(5), pp. 9247–9255. [CrossRef] [PubMed]
Stoppa, M. , and Chiolerio, A. , 2014, “ Wearable Electronics and Smart Textiles: A Critical Review,” Sensors, 14(7), pp. 11957–11992. [CrossRef] [PubMed]
Harada, S. , Kanao, K. , Yamamoto, Y. , Arie, T. , Akita, S. , and Takei, K. , 2014, “ Fully Printed Flexible Fingerprint-Like Three-Axis Tactile and Slip Force and Temperature Sensors for Artificial Skin,” ACS Nano, 8(12), pp. 12851–12857. [CrossRef] [PubMed]
Someya, T. , and Sekitani, T. , 2009, “ Printed Skin-Like Large-Area Flexible Sensors and Actuators,” Proc. Chem., 1(1), pp. 9–12. [CrossRef]
Peterson, G. I. , Larsen, M. B. , Ganter, M. A. , Storti, D. W. , and Boydston, A. J. , 2015, “ 3D-Printed Mechanochromic Materials,” ACS Appl. Mater. Interfaces, 7(1), pp. 577–583. [CrossRef] [PubMed]
Salvo, P. , Raedt, R. , Carrette, E. , Schaubroeck, D. , Vanfleteren, J. , and Cardon, L. , 2012, “ A 3D Printed Dry Electrode for ECG/EEG Recording,” Sens. Actuators A: Phys., 174(0), pp. 96–102. [CrossRef]
Pemberton, R. , Cox, T. , Tuffin, R. , Drago, G. , Griffiths, J. , Pittson, R. , Johnson, G. , Xu, J. , Sage, I. , Davies, R. , Jackson, S. , Kenna, G. , Luxton, R. , and Hart, J. , 2014, “ Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers,” Sensors, 14(11), p. 20519. [CrossRef] [PubMed]
Crowley, K. , Morrin, A. , Hernandez, A. , O'Malley, E. , Whitten, P. G. , Wallace, G. G. , Smyth, M. R. , and Killard, A. J. , 2008, “ Fabrication of an Ammonia Gas Sensor Using Inkjet-Printed Polyaniline Nanoparticles,” Talanta, 77(2), pp. 710–717. [CrossRef]
Komuro, N. , Takaki, S. , Suzuki, K. , and Citterio, D. , 2013, “ Inkjet Printed (Bio)Chemical Sensing Devices,” Anal. Bioanal. Chem., 405(17), pp. 5785–5805. [CrossRef] [PubMed]
Ku, S. , Palanisamy, S. , and Chen, S.-M. , 2013, “ Highly Selective Dopamine Electrochemical Sensor Based on Electrochemically Pretreated Graphite and Nafion Composite Modified Screen Printed Carbon Electrode,” J. Colloid Interface Sci., 411(0), pp. 182–186. [CrossRef] [PubMed]
Li, B. , Santhanam, S. , Schultz, L. , Jeffries-El, M. , Iovu, M. C. , Sauvé, G. , Cooper, J. , Zhang, R. , Revelli, J. C. , Kusne, A. G. , Snyder, J. L. , Kowalewski, T. , Weiss, L. E. , McCullough, R. D. , Fedder, G. K. , and Lambeth, D. N. , 2007, “ Inkjet Printed Chemical Sensor Array Based on Polythiophene Conductive Polymers,” Sens. Actuators B: Chem., 123(2), pp. 651–660. [CrossRef]
Mannoor, M. S. , Jiang, Z. , James, T. , Kong, Y. L. , Malatesta, K. A. , Soboyejo, W. O. , Verma, N. , Gracias, D. H. , and McAlpine, M. C. , 2013, “ 3D Printed Bionic Ears,” Nano Lett., 13(6), pp. 2634–2639. [CrossRef] [PubMed]
Shitanda, I. , Okumura, A. , Itagaki, M. , Watanabe, K. , and Asano, Y. , 2009, “ Screen-Printed Atmospheric Corrosion Monitoring Sensor Based on Electrochemical Impedance Spectroscopy,” Sens. Actuators B: Chem., 139(2), pp. 292–297. [CrossRef]
Kang, B. J. , Lee, C. K. , and Oh, J. H. , 2012, “ All-Inkjet-Printed Electrical Components and Circuit Fabrication on a Plastic Substrate,” Microelectron. Eng., 97(0), pp. 251–254. [CrossRef]
Jones, C. S. , Lu, X. , Renn, M. , Stroder, M. , and Shih, W.-S. , 2010, “ Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution,” Microelectron. Eng., 87(3), pp. 434–437. [CrossRef]
Li, Y. V. , Mourey, D. A. , Loth, M. A. , Zhao, D. A. , Anthony, J. E. , and Jackson, T. N. , 2013, “ Hybrid Inorganic/Organic Complementary Circuits Using PEALD ZnO and Ink-Jet Printed diF-TESADT TFTs,” Org. Electron., 14(10), pp. 2411–2417. [CrossRef]
Chang, J. , Zhang, X. , Ge, T. , and Zhou, J. , 2014, “ Fully Printed Electronics on Flexible Substrates: High Gain Amplifiers and DAC,” Org. Electron., 15(3), pp. 701–710. [CrossRef]
Kim, J. , Na, S.-I. , and Kim, H.-K. , 2012, “ Inkjet Printing of Transparent InZnSnO Conducting Electrodes From Nano-Particle Ink for Printable Organic Photovoltaics,” Sol. Energy Mater. Sol. Cells, 98(0), pp. 424–432. [CrossRef]
Saehana, S. , Darsikin , Yuliza, E. , Arifin, P. , Khairurrijal , and Abdullah, M. , 2014, “ A New Approach for Fabricating Low Cost DSSC by Using Carbon-Ink From Inkjet Printer and Its Improvement Efficiency by Depositing Metal Bridge Between Titanium Dioxide Particles,” ASME J. Sol. Energy Eng., 136(4), p. 044504. [CrossRef]
Park, J.-I. , Lee, G.-Y. , Yang, J. , Kim, C.-S. , and Ahn, S.-H. , 2016, “ Flexible Ceramic-Elastomer Composite Piezoelectric Energy Harvester Fabricated by Additive Manufacturing,” J. Compos. Mater., 50(12), pp. 1573–1579. [CrossRef]
Braam, K. T. , Volkman, S. K. , and Subramanian, V. , 2012, “ Characterization and Optimization of a Printed, Primary Silver–Zinc Battery,” J. Power Sources, 199(0), pp. 367–372. [CrossRef]
Nguyen, T. H. , Fraiwan, A. , and Choi, S. , 2014, “ Paper-Based Batteries: A Review,” Biosens. Bioelectron., 54(0), pp. 640–649. [CrossRef] [PubMed]
Zhu, C. , Han, T. Y.-J. , Duoss, E. B. , Golobic, A. M. , Kuntz, J. D. , Spadaccini, C. M. , and Worsley, M. A. , 2015, “ Highly Compressible 3D Periodic Graphene Aerogel Microlattices,” Nat. Commun., 6, p. 6962. [CrossRef] [PubMed]
Sun, K. , Wei, T. , Ahn, B. Y. , Seo, J. , Dillon, S. , and Lewis, J. A. , 2013, “ 3D Printing of Interdigitated Li-Ion Microbattery Architectures,” Adv. Mater., 25(33), pp. 4539–4543. [CrossRef] [PubMed]
Fuller, S. B. , Wilhelm, E. J. , and Jacobson, J. M. , 2002, “ Ink-Jet Printed Nanoparticle Microelectromechanical Systems,” J. Microelectromech. Syst., 11(1), pp. 54–60. [CrossRef]
Vaezi, M. , Seitz, H. , and Yang, S. , 2013, “ A Review on 3D Micro-Additive Manufacturing Technologies,” Int. J. Adv. Manuf. Technol., 67(5–8), pp. 1721–1754. [CrossRef]
Comina, G. , Suska, A. , and Filippini, D. , 2014, “ PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates,” Lab Chip, 14(2), pp. 424–430. [CrossRef] [PubMed]
Comina, G. , Suska, A. , and Filippini, D. , 2014, “ Low Cost Lab-on-a-Chip Prototyping With a Consumer Grade 3D Printer,” Lab Chip, 14(16), pp. 2978–2982. [CrossRef] [PubMed]
Kitson, P. J. , Rosnes, M. H. , Sans, V. , Dragone, V. , and Cronin, L. , 2012, “ Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices,” Lab Chip, 12(18), pp. 3267–3271. [CrossRef] [PubMed]
Pabst, O. , Perelaer, J. , Beckert, E. , Schubert, U. S. , Eberhardt, R. , and Tünnermann, A. , 2013, “ All Inkjet-Printed Piezoelectric Polymer Actuators: Characterization and Applications for Micropumps in Lab-on-a-Chip Systems,” Org. Electron., 14(12), pp. 3423–3429. [CrossRef]
Farooqui, M. F. , Claudel, C. , and Shamim, A. , 2014, “ An Inkjet-Printed Buoyant 3-D Lagrangian Sensor for Real-Time Flood Monitoring,” IEEE Trans. Antennas Propag., 62(6), pp. 3354–3359. [CrossRef]
Ishiguro, Y. , and Poupyrev, I. , 2014, “ 3D Printed Interactive Speakers,” SIGCHI Conference on Human Factors in Computing Systems, ACM, Toronto, ON, Canada, pp. 1733–1742.
Maeda, R. , Tsaur, J. J. , Lee, S. H. , and Ichiki, M. , 2005, “ Microactuators Based on Thin Films,” Electroceramic-Based MEMS, N. Setter , ed., Springer, New York, pp. 19–35.
Koray Akdogan, E. , Allahverdi, M. , and Safari, A. , 2005, “ Piezoelectric Composites for Sensor and Actuator Applications,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 52(5), pp. 746–775. [CrossRef]
Glasschroeder, J. , Prager, E. , and Zaeh, M. F. , 2015, “ Powder-Bed-Based 3D-Printing of Function Integrated Parts,” Rapid Prototyping J., 21(2), pp. 207–215. [CrossRef]
Roberson, D. , Shemelya, C. M. , MacDonald, E. , and Wicker, R. , 2015, “ Expanding the Applicability of FDM-Type Technologies Through Materials Development,” Rapid Prototyping J., 21(2), pp. 137–143. [CrossRef]
Graphene 3D Lab, 2015, “ Conductive Graphene Filament,” http://www.blackmagic3d.com/product-p/grphn-175.htm
Schulz, S. , Ltkebohle, I. , and Wachsmuth, S. , “ An Affordable, 3D-Printable Camera Eye With Two Active Degrees of Freedom for an Anthropomorphic Robot,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 764–771.
Meisel, N. A. , Elliott, A. M. , and Williams, C. B. , 2015, “ A Procedure for Creating Actuated Joints Via Embedding Shape Memory Alloys in PolyJet 3D Printing,” J. Intell. Mater. Syst. Struct., 26(12), pp. 1498–1512.
Stiltner, L. , Elliott, A. , and Williams, C. , 2011, “ A Method for Creating Actuated Joints Via Fiber Embedding in a Polyjet 3D Printing Process,” 22nd Annual International Solid Freeform Fabrication Symposium, pp. 583–592.
Ma, R. R. , Odhner, L. U. , and Dollar, A. M. , 2013, “ A Modular, Open-Source 3D Printed Underactuated Hand,” 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2737–2743.
Umedachi, T. , Vikas, V. , and Trimmer, B. A. , 2013, “ Highly Deformable 3-D Printed Soft Robot Generating Inching and Crawling Locomotions With Variable Friction Legs,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4590–4595.
Cohen, E. , Vikas, V. , Trimmer, B. , and McCarthy, S. , “ Design Methodologies for Soft-Material Robots Through Additive Manufacturing, From Prototyping to Locomotion,” ASME Paper No. DETC2015-47507.
Xiang Gu, G. , Su, I. , Sharma, S. , Voros, J. L. , Qin, Z. , and Buehler, M. J. , 2016, “ Three-Dimensional-Printing of Bio-Inspired Composites,” ASME J. Biomech. Eng., 138(2), p. 021006. [CrossRef]
MacDonald, E. , Salas, R. , Espalin, D. , Perez, M. , Aguilera, E. , Muse, D. , and Wicker, R. B. , 2014, “ 3D Printing for the Rapid Prototyping of Structural Electronics,” IEEE Access, 2, pp. 234–242. [CrossRef]
Mayer, D. , Stoffregen, H. A. , Heuss, O. , Thiel, J. , Abele, E. , and Melz, T. , 2016, “ Additive Manufacturing of Active Struts for Piezoelectric Shunt Damping,” J. Intell. Mater. Syst. Struct., 27, pp. 743–754. [CrossRef]
Malone, E. , and Lipson, H. , 2006, “ Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators,” Rapid Prototyping J., 12(5), pp. 244–253. [CrossRef]
Carrico, J. D. , Traeden, N. W. , Aureli, M. , and Leang, K. K. , 2015, “ Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures,” ASME Paper No. SMASIS2015-8895.
Palmer, J. A. , Jokiel, B. , Nordquist, C. D. , Kast, B. A. , Atwood, C. J. , Grant, E. , Livingston, F. J. , Medina, F. , and Wicker, R. B. , 2006, “ Mesoscale RF Relay Enabled by Integrated Rapid Manufacturing,” Rapid Prototyping J., 12(3), pp. 148–155. [CrossRef]
Eun, K. , Chon, M.-W. , Yoo, T.-H. , Song, Y.-W. , and Choa, S.-H. , 2015, “ Electromechanical Properties of Printed Copper Ink Film Using a White Flash Light Annealing Process for Flexible Electronics,” Microelectron. Reliab., 55(5), pp. 838–845. [CrossRef]
Tormene, P. , Bartolo, M. , De Nunzio, A. M. , Fecchio, F. , Quaglini, S. , Tassorelli, C. , and Sandrini, G. , 2012, “ Estimation of Human Trunk Movements by Wearable Strain Sensors and Improvement of Sensor's Placement on Intelligent Biomedical Clothes,” Biomed. Eng. Online, 11(1), pp. 95–95. [CrossRef] [PubMed]
Kim, K. J. , and Shahinpoor, M. , 2002, “ A Novel Method of Manufacturing Three-Dimensional Ionic Polymer–Metal Composites (IPMCS) Biomimetic Sensors, Actuators and Artificial Muscles,” Polymer, 43(3), pp. 797–802. [CrossRef]
Vatani, M. , Engeberg, E. D. , and Choi, J.-W. , 2013, “ Hybrid Additive Manufacturing of 3D Compliant Tactile Sensors,” ASME Paper No. SMASIS2015-8895.
Madden, K. E. , and Deshpande, A. D. , 2015, “ On Integration of Additive Manufacturing During the Design and Development of a Rehabilitation Robot: A Case Study,” ASME J. Mech. Des., 137(11), p. 111417. [CrossRef]
Enoch, A. , and Vijayakumar, S. , 2015, “ Rapid Manufacture of Novel Variable Impedance Robots,” ASME J. Mech. Rob., 8(1), p. 011003. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Capacitive touch sensor developed with embedded copper mesh [48]

Grahic Jump Location
Fig. 2

Tactile force sensor with temperature sensor for imitating skin (Reproduced with permission from Harada et al. [57]. Copyright 2014 by American Chemical Society).

Grahic Jump Location
Fig. 3

Ear made from biological tissue with embedded electronics (Reproduced with permission from Mannoor et al. [66]. Copyright 2013 by American Chemical Society).

Grahic Jump Location
Fig. 4

(a) 3D printed microelectronics components without embedded components, (b) after liquid metal paste filling and curing, and (c) a 4-turn solenoid coil [8]

Grahic Jump Location
Fig. 5

Schematics of unique single-stage (a), conventional single-stage (b), and three-stage (c) differential amplifiers with respective micropictographs (d-e) and layout (f)

Grahic Jump Location
Fig. 6

Printed lithium ion battery [78]

Grahic Jump Location
Fig. 7

Inkjet-printed piezoelectric actuator's (a)–(c) manufacturing process and (d) cross-sectional SEM image as well as a (e) cantilever sample, and a (f) membrane sample [84]

Grahic Jump Location
Fig. 8

Three-dimensional printed circuit board [5]

Grahic Jump Location
Fig. 9

Three-dimensional printed motor designed by Aguilera et al [6]

Grahic Jump Location
Fig. 10

Robotic eye developed with the assistance of 3D printing [92]

Grahic Jump Location
Fig. 11

Underactuated 3D finger with embedded fibers [94]

Grahic Jump Location
Fig. 12

Three-dimensional printed soft robot actuated by means of shape memory alloys [96]

Grahic Jump Location
Fig. 13

Infrared remote controller built by the Bitblox printer[3]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In