0
Technical Brief

Application of Gotoh's Orthotropic Yield Function for Modeling Advanced High-Strength Steel Sheets

[+] Author and Article Information
Wei Tong

Professor
Mem. ASME
Department of Mechanical Engineering,
Lyle School of Engineering,
Southern Methodist University,
Dallas, TX 75275-0337
e-mail: wtong@smu.edu

Manuscript received December 1, 2015; final manuscript received April 28, 2016; published online June 20, 2016. Assoc. Editor: Matteo Strano.

J. Manuf. Sci. Eng 138(9), 094502 (Jun 20, 2016) (5 pages) Paper No: MANU-15-1626; doi: 10.1115/1.4033523 History: Received December 01, 2015; Revised April 28, 2016

An accurate description of the directional dependence of uniaxial tensile yielding and plastic flow in advanced high-strength steel sheets may require either a nonassociated plasticity model with separate quadratic yield function and flow potential or an associated plasticity model with nonquadratic yield function. In this paper, Gotoh's fourth-order homogeneous polynomial yield function is applied to model two advanced high-strength steel sheets in an associated plasticity model. Both the parameter selection for calibrating Gotoh's yield function and its positivity and convexity verification are given in some detail. Similarities and differences between the associated plasticity model presented here and the nonassociated one appeared in the literature are discussed in terms of the directional dependence of yield stresses and plastic strain ratios under uniaxial tension and yield stresses under biaxial tension loading.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

Comparison of the experimental data and model predictions on the loading orientation dependence of yield stresses and R-values of TRIP780 steel under uniaxial tension

Grahic Jump Location
Fig. 2

Comparison of the experimental data and model predictions on the loading orientation dependence of yield stresses and R-values of DP590 steel under uniaxial tension

Grahic Jump Location
Fig. 3

Comparison of biaxial yield and flow surfaces of the nonassociated and associated models for TRIP780 steel in the (σx,σy) plane with τxy=0

Grahic Jump Location
Fig. 4

Comparison of biaxial yield and flow surfaces of the nonassociated and associated models for DP590 steel in the (σx,σy) plane with τxy=0

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In