Research Papers

Enhancement of the Analyte Mass Transport in a Microfluidic Biosensor by Deformation of Fluid Flow and Electrothermal Force

[+] Author and Article Information
Marwa Selmi

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
University of Monastir,
Environment Boulevard,
Monastir 5019, Tunisia
e-mail: marwa_selmi@yahoo.fr

Randa Khemiri

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
University of Monastir,
Environment Boulevard,
Monastir 5019, Tunisia
e-mail: randa.khemiri@gmail.com

Fraj Echouchene

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
University of Monastir,
Environment Boulevard,
Monastir 5019, Tunisia
e-mail: frchouchene@yahoo.fr

Hafedh Belmabrouk

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
Department of Physics,
College of Science, Majmaah University,
AlZulfi 11932, Saudi Arabia
e-mail: Hafedh.Belmabrouk@fsm.rnu.tn

1Corresponding author.

Manuscript received April 26, 2015; final manuscript received April 19, 2016; published online May 20, 2016. Assoc. Editor: Yong Huang.

J. Manuf. Sci. Eng 138(8), 081011 (May 20, 2016) (6 pages) Paper No: MANU-15-1199; doi: 10.1115/1.4033484 History: Received April 26, 2015; Revised April 19, 2016

Fluid deformations around a cylinder combined with an applied electric field are used to enhance the kinetics rate and the response time of heterogeneous immunosensors in microfluidic systems. The insertion of an obstacle in the microchannel as well as the application an applied electric field are used to change the fluid motion topology that improves the transport of diffusion-limited proteins. The response time is affected by various parameters such as the inlet flow velocity, the initial analyte concentration and the obstacle position. The effects of the parameters related to the kinetics reaction on the sensitivity and the performance of the biosensor have been studied numerically. Numerical results reveal that an appropriate choice of the inlet analyte and inlet flow velocity with applied electric field may reduce considerably the response time and enhance the microfluidic sensor performance.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Manz, A. , Graber, N. , and Widmer, H. M. , 1990, “ Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sens. Actuators, B, 1(1–6), pp. 244–248. [CrossRef]
Burns, M. A. , Johnson, B. N. , Brahmasandra, S. N. , Handique, K. , Webster, J. R. , Krishnan, M. , Sammarco, T. S. , Man, P. M. , Jones, D. , Heldsinger, D. , Mastrangelo, C. H. , and Burke, D. T. , 1998, “ An Integrated Nanoliter DNA Analysis Device,” Science, 282(5388), pp. 484–487. [CrossRef] [PubMed]
Oki, A. , Adachi, S. , Takamura, Y. , Ishikawa, K. , Ogawa, H. , Ito, Y. , Ichiki, T. , and Horiike, Y. , 2001, “ Electroosmosis Injection of Blood Serum Into Biocom-Patiblemicrocapillary Chip Fabricated on Quartz Plate,” Electroosmosis, 22, pp. 341–347.
Qudus, H. , Chengyang, W. , Yu, Z. , Jessica, S. , and Wei, S. , 2014, “ Fabrication of Biological Microfluidics Using a Digital Microfabrication System,” ASME J. Manuf. Sci. Eng., 136(6), p. 061001. [CrossRef]
Yenny, R. , Russell, M. , and Shanon, R. , 2015, “ Limitations of Additive Manufacturing on Microfluidic Heat Exchanger Components,” ASME J. Manuf. Sci. Eng., 137(3), p. 034504. [CrossRef]
Cao, L. , Mantell, S. , and Polla, D. , 2001, “ Design and Simulation of an Implantable Medi-Cal Drug Delivery System Using Microelectromechanical Systems Technology,” Sens. Actuators, A, 94(1–2), pp. 117–125. [CrossRef]
Kuntaegowdanahalli, S. S. , Bhagat, A. A. S. , Kumar, G. , and Papautsky, I. , 2009, “ Inertial Microfluidics for Continuous Particle Separation in Spiral Microchannels,” Lab Chip, 9(20), pp. 2973–2980. [CrossRef] [PubMed]
Prahalad, K. R. , Jia (Peter), L. , David, R. , Zhenyu (James), K. , and Christopher, W. , 2015, “ Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors,” ASME J. Manuf. Sci. Eng., 137(6), p. 061007. [CrossRef]
Ehrnstrom, R. , 2002, “ Miniaturization and Integration: Challenges and Breakthroughs in Microfluidics,” Lab Chip, 2(2), pp. 26N–30N. [CrossRef] [PubMed]
Lee, K.-H. , Su, Y.-D. , Chen, S.-J. , Tseng, F.-G. , and Lee, G.-B. , 2007, “ Microfluidic Systems Integrated With Two-Dimensional Surface Plasmon Resonance Phase Imaging Systems for Microarray Immunoassay,” Biosens. Bioelectron., 23(4), pp. 466–472. [CrossRef] [PubMed]
Kanda, V. , Kariuki, J. K. , Harrison, D. J. , and McDermott, M. T. , 2004, “ Label-Free Reading of Microarray-Based Immunoassays With Surface Plasmon Resonance Imaging,” Anal. Chem., 76(24), pp. 7257–7262. [CrossRef] [PubMed]
Pascal-Delannoy, F. , Sorli, B. , and Boyer, A. , 2000, “ Quartz Crystal Microbalance QCM Used as Humidity Sensor,” Sens. Actuators, A, 84(3), pp. 285–291. [CrossRef]
Zhou, X. C. , Huang, L. Q. , and Li, S. F. Y. , 2001, “ Microgravimetric DNA Sensor Based on Quartz Crystal Microbalance: Comparison of Oligonucleotide Immobilization Methods and the Application in Genetic Diagnosis,” Biosens. Bioelectron., 16(1–2), pp. 85–95. [CrossRef] [PubMed]
Barhoumi, H. , Maaref, A. , Rammah, M. , Martelet, C. , Jaffrezic, N. , Mousty, C. , Vial, S. , and Forano, C. , 2006, “ Urea Biosensor Based on Zn3Al-Urease Layered Double Hydroxides Nanohybrid Coated on Insulated Silicon Structures,” Mater. Sci. Eng. C, 26(2–3), pp. 328–333. [CrossRef]
Hibbert, D. B. , Gooding, J. J. , and Erokhin, P. , 2002, “ Kinetics of Irreversible Adsorption With Diffusion: Application to Biomolecule Immobilization,” Langmuir, 18(5), pp. 1770–1776. [CrossRef]
Chaiken, I. , Rosé, S. , and Karlsson, R. , 1992, “ Analysis of Macromolecular Interactions Using Immobilized Ligands,” Anal. Biochem., 201(2), pp. 197–210. [CrossRef] [PubMed]
Sigurdson, M. , Wang, D. , and Meinhart, C. D. , 2005, “ Electrothermal Stirring for Heterogeneous Immunoassays,” Lab Chip, 5(12), pp. 1366–1373. [CrossRef] [PubMed]
Feldman, H. C. , Sigurdson, M. , and Meinhart, C. D. , 2007, “ AC Electrothermal Enhancement of Heterogeneous Assays in Microfluidics,” Lab Chip, 7(11), pp. 1553–1559. [CrossRef] [PubMed]
Huang, K.-R. , Chang, J.-S. , Chao, S. D. , Wu, K.-C. , Yang, C.-K. , Lai, C.-Y. , and Chen, S.-H. , 2008, “ Simulation on Binding Efficiency of Immunoassay for a Biosensor With Applying Electrothermal Effect,” J. Appl. Phys., 104(6), p. 064702. [CrossRef]
Hlushkou, D. , Perdue, R. K. , Dhopeshwarkar, R. , Crooks, R. M. , and Tallarek, U. , 2009, “ Electric Field Gradient Focusing in Microchannels With Embedded Bipolar Electrode,” Lab Chip, 9(13), pp. 1903–1913. [CrossRef] [PubMed]
Hart, R. , Lec, R. , and Noh, H. , 2010, “ Enhancement of Heterogeneous Immunoassays Using AC Electroosmosis,” Sens. Actuators, B, 147(1), pp. 366–375. [CrossRef]
Liu, X. , Yang, K. , Wadhwa, A. , Eda, S. , Li, S. , and Wu, J. , 2011, “ Development of an AC Electrokinetics-Based Immunoassay System for On-Site Serodiagnosis of Infectious Diseases,” Sens. Actuators, A, 171(2), pp. 406–413. [CrossRef]
Mahmoodi, S. R. , Bayati, M. , Hosseinirad, S. , Foroumadi, A. , Gilani, K. , and Rezayat, S. M. , “ AC Electrokinetic Manipulation of Selenium Nanoparticles for Potential Nanosensor Applications,” Mater. Res. Bull., 48(3), pp. 1262–1267. [CrossRef]
Huang, K.-R. , and Chang, J.-S. , 2013, “ Three Dimensional Simulation on Binding Efficiency of Immunoassay for a Biosensor With Applying Electrothermal Effect,” Heat Mass Transfer, 49(11), pp. 1647–1658. [CrossRef]
Yang, W. , and Woolley, A. T. , 2010, “ Integrated Multiprocess Microfluidic Systems for Automating Analysis,” J. Assoc. Lab. Autom., 15(3), pp. 198–209. [CrossRef]
Hrdlička, J. , Patel, N. S. , and Šnita, D. , 2014, “ Traveling Wave Electroosmosis: The Influence of Electrode Array Geometry,” Electrophoresis, 35, pp. 1790–1794. [CrossRef] [PubMed]
Williams, S. J. , and Green, N. G. , 2015, “ Electrothermal Pumping With Interdigitated Electrodes and Resistive Heaters,” Electrophoresis, 36(15), pp. 1681–1689. [CrossRef] [PubMed]
Ramos, A. , Morgan, H. , Green, N. G. , and Castellanos, A. , 1998, “ Ac Electrokinetics: A Review of Forces in Microelectrode Structures,” J. Phys. D: Appl. Phys., 31(18), pp. 2338–2353. [CrossRef]
Melvin, E. M. , Moore, B. R. , Gilchrist, K. H. , Grego, S. , and Velev, O. D. , 2011, “ On-Chip Collection of Particles and Cells by AC Electroosmotic Pumping and Dielectrophoresis Using Asymmetric Microelectrodes,” Biomicrofluidics, 5(3), pp. 034113–034117. [CrossRef]
Huang, Y.-H. , Chang, J.-S. , Chao, S. D. , Wu, K.-C. , and Huang, L.-S. , 2014, “ Improving the Binding Efficiency of Quartz Crystal Microbalance Biosensors by Applying the Electrothermal Effect,” Biomicrofluidics, 8(5), p. 054116. [CrossRef] [PubMed]
Chen, D. F. , and Du, H. , 2006, “ Simulation Studies on Electrothermal Fluid Flow Induced in a Dielectrophoretic Microelectrode System,” J. Micromech. Microeng., 16(11), pp. 2411–2419. [CrossRef]
Green, N. G. , Ramos, A. , Gonzalez, A. , Castellanos, A. , and Morgan, H. , 2001, “ Electrothermally Induced Fluid Flow on Microelectrodes,” J. Electrostat., 53(2), pp. 71–87. [CrossRef]
Castellanos, A. , 1998, Electrohydrodynamics, Springer, New York.
Singiresu, S. R. , 2004, The Finite Element Method in Engineering, 4th ed., Elsevier Science and Technology Books, Miami, FL.
Pearson, J. R. A. , 1959, “ A Note on the ‘‘Danckwerts" Boundary Conditions for Continuous Flow Reactors,” Chem. Eng. Technol., 10(4), pp. 281–284. [CrossRef]
Hu, G. , Gao, Y. , and Li, D. , 2007, “ Modeling Micropatterned Antigen–Antibody Binding Kinetics in a Microfluidic Chip,” Biosens. Bioelectron., 22(7), pp. 1403–1409. [CrossRef] [PubMed]
Kim, D. R. , and Zheng, X. , 2008, “ Numerical Characterization and Optimization of the Microfluidics for Nanowire Biosensors,” Nano Lett., 8(10), pp. 3233–3237. [CrossRef] [PubMed]
Selmi, M. , Echouchene, F. , and Belmabrouk, H. , 2015, “ Analysis of Microfluidic Biosensor Efficiency Using a Cylindrical Obstacle,” Sens. Lett., 14(1), pp. 26–31. [CrossRef]
Hofmann, O. , Voirin, G. , Niedermann, P. , and Manz, A. , 2002, “ Three-Dimensional Microfluidic Confinement for Efficient Sample Delivery to Biosensor Surfaces. Application to Immunoassays on Planar Optical Waveguides,” Anal. Chem., 74(20), pp. 5243–5250. [CrossRef] [PubMed]
Yang, C.-K. , Chang, J.-S. , Chao, S. D. , and Wu, K.-C. , 2008, “ Effects of Diffusion Boundary Layer on Reaction Kinetics of Immunoassay in a Biosensor,” J. Appl. Phys., 103(8), pp. 084702–084710. [CrossRef]


Grahic Jump Location
Fig. 1

Two-dimensional approximation of the system in the vertical xy-plane. Microflow around a cylinder with circular cross section. X presents the starting point of the binding surface and l is the surface length. L and H are the length and height of microchannel, respectively. The fluid flows from left to right.

Grahic Jump Location
Fig. 2

Flow chart of numerical simulation

Grahic Jump Location
Fig. 7

(a) Temporal evolution of the average surface concentration of antigen–antibody complex for several inlet analyte concentrations (b) response time as a function of the inlet analyte concentration

Grahic Jump Location
Fig. 6

(a) Temporal evolution of the average surface concentration of antigen–antibody complex for several obstacle positions (b) response time as a function of the obstacle position

Grahic Jump Location
Fig. 4

Normalized analyte concentration profiles (μmol/m3) in microchannel. (a) without force and without obstacle, Fig. 4(b) with force and without obstacle, Fig. 4(c) without force and with obstacle, Fig. 4(d) with force and with obstacle.

Grahic Jump Location
Fig. 5

Temporal evolution of the average surface concentration of antigen–antibody complex

Grahic Jump Location
Fig. 3

Binding kinetics of the CRP surface complex concentration for four configurations: without force and without obstacle, with force and without obstacle, without force and with obstacle, with force and with obstacle




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In