0
Research Papers

Enhancement of the Analyte Mass Transport in a Microfluidic Biosensor by Deformation of Fluid Flow and Electrothermal Force

[+] Author and Article Information
Marwa Selmi

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
University of Monastir,
Environment Boulevard,
Monastir 5019, Tunisia
e-mail: marwa_selmi@yahoo.fr

Randa Khemiri

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
University of Monastir,
Environment Boulevard,
Monastir 5019, Tunisia
e-mail: randa.khemiri@gmail.com

Fraj Echouchene

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
University of Monastir,
Environment Boulevard,
Monastir 5019, Tunisia
e-mail: frchouchene@yahoo.fr

Hafedh Belmabrouk

Laboratory of Electronics and Microelectronics,
Faculty of Science of Monastir,
Department of Physics,
College of Science, Majmaah University,
AlZulfi 11932, Saudi Arabia
e-mail: Hafedh.Belmabrouk@fsm.rnu.tn

1Corresponding author.

Manuscript received April 26, 2015; final manuscript received April 19, 2016; published online May 20, 2016. Assoc. Editor: Yong Huang.

J. Manuf. Sci. Eng 138(8), 081011 (May 20, 2016) (6 pages) Paper No: MANU-15-1199; doi: 10.1115/1.4033484 History: Received April 26, 2015; Revised April 19, 2016

Fluid deformations around a cylinder combined with an applied electric field are used to enhance the kinetics rate and the response time of heterogeneous immunosensors in microfluidic systems. The insertion of an obstacle in the microchannel as well as the application an applied electric field are used to change the fluid motion topology that improves the transport of diffusion-limited proteins. The response time is affected by various parameters such as the inlet flow velocity, the initial analyte concentration and the obstacle position. The effects of the parameters related to the kinetics reaction on the sensitivity and the performance of the biosensor have been studied numerically. Numerical results reveal that an appropriate choice of the inlet analyte and inlet flow velocity with applied electric field may reduce considerably the response time and enhance the microfluidic sensor performance.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 2

Flow chart of numerical simulation

Grahic Jump Location
Fig. 1

Two-dimensional approximation of the system in the vertical xy-plane. Microflow around a cylinder with circular cross section. X presents the starting point of the binding surface and l is the surface length. L and H are the length and height of microchannel, respectively. The fluid flows from left to right.

Grahic Jump Location
Fig. 3

Binding kinetics of the CRP surface complex concentration for four configurations: without force and without obstacle, with force and without obstacle, without force and with obstacle, with force and with obstacle

Grahic Jump Location
Fig. 4

Normalized analyte concentration profiles (μmol/m3) in microchannel. (a) without force and without obstacle, Fig. 4(b) with force and without obstacle, Fig. 4(c) without force and with obstacle, Fig. 4(d) with force and with obstacle.

Grahic Jump Location
Fig. 5

Temporal evolution of the average surface concentration of antigen–antibody complex

Grahic Jump Location
Fig. 6

(a) Temporal evolution of the average surface concentration of antigen–antibody complex for several obstacle positions (b) response time as a function of the obstacle position

Grahic Jump Location
Fig. 7

(a) Temporal evolution of the average surface concentration of antigen–antibody complex for several inlet analyte concentrations (b) response time as a function of the inlet analyte concentration

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In