0
Research Papers

Fundamental Study on Laser Interactions With Nanoparticles-Reinforced Metals—Part I: Effect of Nanoparticles on Optical Reflectivity, Specific Heat, and Thermal Conductivity

[+] Author and Article Information
Chao Ma

Department of Mechanical and
Aerospace Engineering,
University of California,
Los Angeles, CA 90095
e-mail: machao@ucla.edu

Jingzhou Zhao

Department of Mechanical and
Aerospace Engineering,
University of California,
Los Angeles, CA 90095
e-mail: jingzhou.zhao@ucla.edu

Chezheng Cao

Department of Mechanical and
Aerospace Engineering,
University of California,
Los Angeles, CA 90095
e-mail: cheercao@ucla.edu

Ting-Chiang Lin

Department of Mechanical and
Aerospace Engineering,
University of California,
Los Angeles, CA 90095
e-mail: jasonlin77830@ucla.edu

Xiaochun Li

Fellow ASME
Professor
Department of Mechanical and
Aerospace Engineering,
University of California,
Los Angeles, CA 90095
e-mail: xcli@seas.ucla.edu

Manuscript received October 17, 2015; final manuscript received April 1, 2016; published online June 24, 2016. Assoc. Editor: Hongqiang Chen.

J. Manuf. Sci. Eng 138(12), 121001 (Jun 24, 2016) (7 pages) Paper No: MANU-15-1520; doi: 10.1115/1.4033392 History: Received October 17, 2015; Revised April 01, 2016

It is of tremendous interest to apply laser to process nanoparticles-reinforced metals for widespread applications. However, little fundamental understanding has been obtained on the underlining physics of laser interactions with nanoparticles-reinforced metals. In this work, fundamental study was carried out to understand the effects of nanoparticles on the optical and thermophysical properties of the base metal, the corresponding heat transfer and melt pool flow processes, and the consequent surface property in laser melting. Part I presents both experimental and theoretical results on the effects of nanoparticles on the optical reflectivity, specific heat, and thermal conductivity. Electrocodeposition was used to produce nickel samples with nanoparticles. Using a power meter, the reflectivity of Ni/Al2O3 (1.8 vol. %) was measured to be 65.8% while pure Ni was at 67.4%, indicating that the Al2O3 nanoparticles did not change the reflectivity substantially. Differential scanning calorimetry was used to determine the heat capacity of the nanocomposites. The specific heat capacities of the Ni/Al2O3 (4.4 vol. %) and Ni/SiC (3.6 vol. %) at room temperature were 0.424 ± 0.013 J/g K and 0.423 ± 0.014 J/g K, respectively, close to that of pure Ni, 0.424 ± 0.008 J/g K. An experimental setup was developed to measure thermal conductivity based on the laser flash method. The thermal conductivities of these Ni/Al2O3 and Ni/SiC nanocomposites at room temperature were 84.1 ± 3.4 W/m K and 87.3 ± 3.4 W/m K, respectively, less than that of pure Ni, 91.7 ± 2.8 W/m K. Theoretical models based on the effective medium approximation theory were also used to predict the heat capacity and thermal conductivity of the nanoparticles-reinforced nickel. The theoretical results match well with the measurements. The knowledge of the optical and thermophysical properties of nanoparticles-reinforced metals would provide valuable insights to understand and control laser processing of metal matrix nanocomposites.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rawal, S. , 2001, “ Metal-Matrix Composites for Space Applications,” JOM, 53(4), pp. 14–17. [CrossRef]
Crainic, N. , and Marques, A. T. , 2002, “ Nanocomposites: A State-of-the-Art Review,” Key Eng. Mater., 230–232, pp. 656–659. [CrossRef]
Jiang, Q. C. , Li, X. L. , and Wang, H. Y. , 2003, “ Fabrication of TiC Particulate Reinforced Magnesium Matrix Composites,” Scr. Mater., 48(6), pp. 713–717. [CrossRef]
Yang, Y. , Lan, J. , and Li, X. , 2004, “ Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy,” Mater. Sci. Eng. A, 380(1–2), pp. 378–383. [CrossRef]
Cao, G. , Konishi, H. , and Li, X. , 2008, “ Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing,” ASME J. Manuf. Sci. Eng., 130(3), p. 031105. [CrossRef]
Chen, L. , Konishi, H. , Fehrenbacher, A. , Ma, C. , Xu, J. , Choi, H. , Xu, H. , Pfefferkorn, F. E. , and Li, X. , 2012, “ Novel Nanoprocessing Route for Bulk Graphene Nanoplatelets Reinforced Metal Matrix Nanocomposites,” Scr. Mater., 67(1), pp. 29–32. [CrossRef]
Ma, C. , Chen, L. , Xu, J. , Fehrenbacher, A. , Li, Y. , Pfefferkorn, F. E. , Duffie, N. A. , Zheng, J. , and Li, X. , 2013, “ Effect of Fabrication and Processing Technology on the Biodegradability of Magnesium Nanocomposites,” J. Biomed. Mater. Res., Part B, 101(5), pp. 870–877. [CrossRef]
Low, C. T. J. , Wills, R. G. A. , and Walsh, F. C. , 2006, “ Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit,” Surf. Coat. Technol., 201(1–2), pp. 371–383. [CrossRef]
Ready, J. F. , and Farson, D. F. , 2001, LIA Handbook of Laser Material Processing, Laser Institute of America, Orlando, FL.
Steen, W. M. , 2010, Laser Material Processing, Springer-Verlag, New York.
Wen, S. , and Shin, Y. C. , 2011, “ Comprehensive Predictive Modeling and Parametric Analysis of Multitrack Direct Laser Deposition Processes,” J. Laser Appl., 23(2), p. 022003. [CrossRef]
Hsu, S. , Tan, H. , and Yao, Y. L. , 2013, “ Effect of Laser-Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid),” ASME J. Manuf. Sci. Eng., 136(1), p. 011005. [CrossRef]
Zhou, Y. , Gao, Y. , Wu, B. , Tao, S. , and Liu, Z. , 2014, “ Deburring Effect of Plasma Produced by Nanosecond Laser Ablation,” ASME J. Manuf. Sci. Eng., 136(2), p. 024501. [CrossRef]
Kongsuwan, P. , Brandal, G. , and Yao, Y. L. , 2015, “ Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates,” ASME J. Manuf. Sci. Eng., 137(3), p. 031004. [CrossRef]
Gu, D. , Wang, H. , and Zhang, G. , 2014, “ Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder,” Metall. Mater. Trans. A, 45(1), pp. 464–476. [CrossRef]
Biedunkiewicz, A. , Biedunkiewicz, W. , Figiel, P. , Gabriel-Polrolniczak, U. , Grzesiak, D. , and Krawczyk, M. , 2013, “ Effect of Milling Time on Thermal Treatment of TiC, TiB2/Steel Powders,” J. Therm. Anal. Calorim., 113(1), pp. 379–383. [CrossRef]
Dadbakhsh, S. , and Hao, L. , “ Effect of Al Alloys on Selective Laser Melting Behaviour and Microstructure of In Situ Formed Particle Reinforced Composites,” J. Alloys Compd., 541, pp. 328–334. [CrossRef]
Song, B. , Dong, S. , Coddet, P. , Zhou, G. , Ouyang, S. , Liao, H. , and Coddet, C. , 2013, “ Microstructure and Tensile Behavior of Hybrid Nano-Micro SiC Reinforced Iron Matrix Composites Produced by Selective Laser Melting,” J. Alloys Compd., 579, pp. 415–421. [CrossRef]
Vadali, M. , Ma, C. , Duffie, N. A. , Li, X. , and Pfefferkorn, F. E. , 2012, “ Pulsed Laser Micro Polishing: Surface Prediction Model,” J. Manuf. Processes, 14(3), pp. 307–315. [CrossRef]
Vadali, M. , Ma, C. , Duffie, N. A. , Li, X. , and Pfefferkorn, F. E. , 2013, “ Effects of Pulse Duration on Laser Micro Polishing Using Spatial Gaussian Intensity Distribution,” ASME J. Micro Nano Manuf., 1(1), p. 011006. [CrossRef]
Ma, C. , Vadali, M. , Duffie, N. A. , Pfefferkorn, F. E. , and Li, X. , 2013, “ Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6Al4V,” ASME J. Manuf. Sci. Eng., 135(6), p. 061023. [CrossRef]
Pfefferkorn, F. E. , Duffie, N. A. , Li, X. , Vadali, M. , and Ma, C. , 2013, “ Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow,” CIRP Ann., 62(1), pp. 203–206. [CrossRef]
Ma, C. , Vadali, M. , Li, X. , Duffie, N. A. , and Pfefferkorn, F. E. , 2014, “ Analytical and Experimental Investigation of Thermocapillary Flow in Pulsed Laser Micropolishing,” ASME J. Micro Nano Manuf., 2(2), p. 021010. [CrossRef]
Ma, C. , Chen, L. , Xu, J. , Zhao, J. , and Li, X. , 2015, “ Control of Fluid Dynamics by Nanoparticles in Laser Melting,” J. Appl. Phys., 117(11), p. 114901. [CrossRef]
Wang, Q. , Morrow, J. D. , Ma, C. , Duffie, N. A. , and Pfefferkorn, F. E. , 2015, “ Surface Prediction Model for Thermocapillary Regime Pulsed Laser Micro Polishing of Metals,” J. Manuf. Processes, 20(1), pp. 340–348. [CrossRef]
Vafaei, S. , Purkayastha, A. , Jain, A. , Ramanath, G. , and Borca-Tasciuc, T. , 2009, “ The Effect of Nanoparticles on the Liquid–Gas Surface Tension of Bi2Te3 Nanofluids,” Nanotechnology, 20(18), p. 185702. [CrossRef] [PubMed]
Corcione, M. , 2011, “ Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids,” Energy Convers. Manag., 52(1), pp. 789–793. [CrossRef]
Poudel, B. , Hao, Q. , Ma, Y. , Lan, Y. , Minnich, A. , Yu, B. , Yan, X. , Wang, D. , Muto, A. , Vashaee, D. , Chen, X. , Liu, J. , Dresselhaus, M. S. , Chen, G. , and Ren, Z. , 2008, “ High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, 320(5876), pp. 634–638. [CrossRef] [PubMed]
Parker, W. J. , Jenkins, R. J. , Butler, C. P. , and Abbott, G. L. , 1961, “ Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys., 32(9), pp. 1679–1684. [CrossRef]
Li, H. H. , 1980, “ Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives,” J. Phys. Chem. Ref. Data, 9(3), pp. 561–658. [CrossRef]
Mills, K. C. , 2002, Recommended Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
Snead, L. L. , Nozawa, T. , Katoh, Y. , Byun, T. , Kondo, S. , and Petti, D. A. , 2007, “ Handbook of SiC Properties for Fuel Performance Modeling,” J. Nucl. Mater., 371(1–3), pp. 329–377. [CrossRef]
Chase, M. W., Jr. , 1998, “ NIST-JANAF Thermochemical Tables,” J. Phys. Chem. Ref. Data, Monograph No. 9.
Nan, C. W. , Birringer, R. , Clarke, D. R. , and Gleiter, H. , 1997, “ Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699. [CrossRef]
Ordonez-Miranda, J. , Yang, R. , and Alvarado-Gil, J. J. , 2011, “ On the Thermal Conductivity of Particulate Nanocomposites,” Appl. Phys. Lett., 98(23), p. 233111. [CrossRef]
Faroughi, S. A. , and Huber, C. , 2015, “ Effective Thermal Conductivity of Metal and Non-Metal Particulate Composites With Interfacial Thermal Resistance at High Volume Fraction of Nano to Macro-Sized Spheres,” J. Appl. Phys., 117(5), p. 055104. [CrossRef]
Liu, D. M. , Tuan, W. H. , and Chiu, C. C. , 1995, “ Thermal Diffusivity, Heat Capacity and Thermal Conductivity in Al2O3-Ni Composite,” Mater. Sci. Eng. B, 31(3), pp. 287–291. [CrossRef]
Chung, Y. D. , Chojnacka, A. P. , Avedisian, C. T. , and Raj, R. , 1997, “ Thermal Diffusivity of Particulate Composites Made From Aluminum Oxide and Nickel Aluminide by a Photothermal Deflection Technique,” Acta Mater., 45(7), pp. 2983–2993. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Process flow for preparation of pure Ni and Ni/Al2O3 nanocomposite samples

Grahic Jump Location
Fig. 2

Experimental setup for reflectivity measurement

Grahic Jump Location
Fig. 3

Experimental setup for measurements of thermal diffusivity and conductivity

Grahic Jump Location
Fig. 4

SEM micrographs of electrocodeposited Ni/Al2O3 surface

Grahic Jump Location
Fig. 5

Measurement of reflectivity of silicon wafer

Grahic Jump Location
Fig. 6

Measurement of reflectivities of pure Ni and Ni/Al2O3 nanocomposite

Grahic Jump Location
Fig. 7

Measured specific heat of Ni, Ni/Al2O3, and Ni/SiC at room temperature

Grahic Jump Location
Fig. 8

Measured photodiode signal and temperature

Grahic Jump Location
Fig. 9

Thermal conductivity of pure Ni, Ni/Al2O3, and Ni/SiC at room temperature

Grahic Jump Location
Fig. 10

Heat capacities of Ni, Al2O3, and SiC from literature

Grahic Jump Location
Fig. 11

Predicted heat capacities of Ni/Al2O3 and Ni/SiC in comparison with that of Ni

Grahic Jump Location
Fig. 12

Predicted thermal conductivity of Ni/Al2O3 as a function of nanoparticle size at a fraction of 4.4 vol. %

Grahic Jump Location
Fig. 13

Predicted thermal conductivity of Ni/Al2O3 as a function of nanoparticle fraction at a radius of 25 nm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In