0
Technical Brief

A New Metric for Automated Stability Identification in Time Domain Milling Simulation

[+] Author and Article Information
Andrew Honeycutt

Department of Mechanical Engineering
and Engineering Science,
University of North Carolina at Charlotte,
9201 University City Boulevard,
Charlotte, NC 28223
e-mail: ahoney15@uncc.edu

Tony L. Schmitz

Department of Mechanical Engineering
and Engineering Science,
University of North Carolina at Charlotte,
9201 University City Boulevard,
Charlotte, NC 28223
e-mail: tony.schmitz@uncc.edu

1Corresponding author.

Manuscript received August 24, 2015; final manuscript received January 4, 2016; published online March 8, 2016. Assoc. Editor: Laine Mears.

J. Manuf. Sci. Eng 138(7), 074501 (Mar 08, 2016) (7 pages) Paper No: MANU-15-1444; doi: 10.1115/1.4032586 History: Received August 24, 2015; Revised January 04, 2016

A new metric is presented to automatically establish the stability limit for time domain milling simulation signals. It is based on periodically sampled data. Because stable cuts exhibit forced vibration, the sampled points repeat over time. Periodically sampled points for unstable cuts, on the other hand, do not repeat with each tooth passage. The metric leverages this difference to define a numerical value of nominally zero for a stable cut and a value greater than zero for an unstable cut. The metric is described and is applied to numerical and experimental results.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Arnold, R. N. , 1946, “ The Mechanism of Tool Vibration in the Cutting of Steel,” Proc. Inst. Mech. Eng., 154(1), pp. 261–284. [CrossRef]
Doi, S. , and Kato, S. , 1956, “ Chatter Vibration of Lathe Tools,” ASME, 78, pp. 1127–1134.
Tobias, S. A. , and Fishwick, W. , 1958, “ The Chatter of Lathe Tools Under Orthogonal Cutting Conditions,” ASME, 80, pp. 1079–1088.
Tlusty, J. , and Polacek, M. , 1963, “ The Stability of Machine Tools Against Self-Excited Vibrations in Machining,” Int. Res. Prod. Eng., 1(1), pp. 465–474.
Tobias, S. A. , 1965, Machine Tool Vibration, Wiley, New York.
Merritt, H. E. , 1965, “ Theory of Self-Excited Machine-Tool Chatter,” ASME J. Eng. Ind., 87(4), pp. 447–454. [CrossRef]
Tlusty, J. , and Polacek, M. , 1968, “ Experience With Analysing Stability of Machine Tool Against Chatter,” MTDR Conference, pp. 521–570.
Shridar, R. , Hohn, R. E. , and Long, G. W. , 1968, “ A General Formulation of the Milling Process Equation,” ASME J. Eng. Ind., 90(2), pp. 317–324. [CrossRef]
Hohn, R. E. , Shridar, R. , and Long, G. W. , 1968, “ A Stability Algorithm for a Special Case of the Milling Process,” ASME J. Eng. Ind., 90(2), pp. 326–329. [CrossRef]
Shridar, R. , Hohn, R. E. , and Long, G. W. , 1968, “ A Stability Algorithm for the General Milling Process,” ASME J. Eng. Ind., 90(2), pp. 330–334. [CrossRef]
Hanna, N. H. , and Tobias, S. A. , 1974, “ A Theory of Nonlinear Regenerative Chatter,” J. Eng. Ind., 96(1), pp. 247–255. [CrossRef]
Tlusty, J. , and Ismail, F. , 1981, “ Basic Non-Linearity in Machining Chatter,” Ann. CIRP, 30(1), pp. 299–304. [CrossRef]
Tlusty, J. , and Ismail, F. , 1983, “ Special Aspects of Chatter in Milling,” ASME J. Vib., Stress Reliab. Des., 105(1), pp. 24–32. [CrossRef]
Tlusty, J. , 1985, “ Machine Dynamics,” Handbook of High-Speed Machining Technology, R. I. King , ed., Chapman and Hall, New York, pp. 48–153.
Tlusty, J. , 1986, “ Dynamics of High-Speed Milling,” ASME J. Eng. Ind., 108(2), pp. 59–67. [CrossRef]
Minis, I. , and Yanusevsky, R. , 1993, “ A New Theoretical Approach for Prediction of Chatter in Milling,” ASME J. Eng. Ind., 115(1), pp. 1–8. [CrossRef]
Altintas, Y. , and Budak, E. , 1995, “ Analytical Prediction of Stability Lobes in Milling,” Ann. CIRP, 44(1), pp. 357–362. [CrossRef]
Davies, M. A. , Dutterer, B. S. , Pratt, J. R. , and Schaut, A. J. , 1998, “ On the Dynamics of High-Speed Milling With Long, Slender Endmills,” Ann. CIRP, 47(1), pp. 55–60. [CrossRef]
Moon, F. C. , and Kalmár-Nagy, T. , 2001, “ Nonlinear Models for Complex Dynamics in Cutting Materials,” Philos. Trans. R. Soc. London A, 359(1781), pp. 695–711. [CrossRef]
Davies, M. A. , Pratt, J. R. , Dutterer, B. S. , and Burns, T. J. , 2000, “ The Stability of Low Radial Immersion Milling,” Ann. CIRP, 49(1), pp. 37–40. [CrossRef]
Moon, F. C. , 1994, “ Chaotic Dynamics and Fractals in Material Removal Processes,” Nonlinearity and Chaos in Engineering Dynamics, J. Thompson , and S. Bishop , eds., Wiley, New York, pp. 25–37.
Bukkapatnam, S. , Lakhtakia, A. , and Kumara, S. , 1995, “ Analysis of Senor Signals Shows Turning on a Lathe Exhibits Low-Dimensional Chaos,” Phys. Rev. E, 52(3), pp. 2375–2387. [CrossRef]
Stépán, G. , and Kalmár-Nagy, T. , 1997, “ Nonlinear Regenerative Machine Tool Vibrations,” ASME Paper No. DETC 97/VIB-4021.
Nayfey, A. , Chin, C. , and Pratt, J. , 1998, “ Applications of Perturbation Methods to Tool Chatter Dynamics,” Dynamics and Chaos in Manufacturing Processes, F. C. Moon , ed., Wiley, New York, pp. 193–213.
Minis, I. , and Berger, B. S. , 1998, “ Modelling, Analysis, and Characterization of Machining Dynamics,” Dynamics and Chaos in Manufacturing Processes, F. C. Moon , ed., Wiley, New York, pp. 125–163.
Moon, F. C. , and Johnson, M. , 1998, “ Nonlinear Dynamics and Chaos in Manufacturing Processes,” Dynamics and Chaos in Manufacturing Processes, F. C. Moon , ed., Wiley, New York, pp. 3–32.
Smith, K. S. , and Tlusty, J. , 1991, “ An Overview of Modeling and Simulation of the Milling Process,” J. Eng. Ind., 113(2), pp. 169–175. [CrossRef]
Campomanes, M. L. , and Altintas, Y. , 2003, “ An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions,” ASME J. Manuf. Sci. Eng., 125(3), pp. 416–422. [CrossRef]
Zhao, M. X. , and Balachandran, B. , 2001, “ Dynamics and Stability of Milling Process,” Int. J. Solids Struct., 38, pp. 2233–2248. [CrossRef]
Davies, M. A. , Pratt, J. R. , Dutterer, B. , and Burns, T. J. , 2002, “ Stability Prediction for Low Radial Immersion Milling,” ASME J. Manuf. Sci. Eng., 124(2), pp. 217–225. [CrossRef]
Mann, B. P. , Insperger, T. , Bayly, P. V. , and Stépán, G. , 2003, “ Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification,” Int. J. Mach. Tools Manuf., 43(1), pp. 35–40. [CrossRef]
Mann, B. P. , Insperger, T. , Bayly, P. V. , and Stépán, G. , 2003, “ Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods,” Int. J. Mach. Tools Manuf., 43(1), pp. 25–34. [CrossRef]
Insperger, T. , Stépán, G. , Bayly, P. V. , and Mann, B. P. , 2003, “ Multiple Chatter Frequencies in Milling Processes,” J. Sound Vib., 262(2), pp. 333–345. [CrossRef]
Insperger, T. , and Stépán, G. , 2004, “ Vibration Frequencies in High-Speed Milling Processes or a Positive Answer to Davies, Pratt, Dutterer, and Burns,” ASME J. Manuf. Sci. Eng., 126(3), pp. 481–487. [CrossRef]
Mann, B. P. , Bayly, P. V. , Davies, M. A. , and Halley, J. E. , 2004, “ Limit Cycles, Bifurcations, and Accuracy of the Milling Process,” J. Sound Vib., 277, pp. 31–48. [CrossRef]
Merdol, S. D. , and Altintas, Y. , 2004, “ Multi Frequency Solution of Chatter Stability for Low Immersion Milling,” ASME J. Manuf. Sci. Eng., 126(3), pp. 459–466. [CrossRef]
Govekar, E. , Gradišek, J. , Kalveram, M. , Insperger, T. , Weinert, K. , Stepan, G. , and Grabec, I. , 2005, “ On Stability and Dynamics of Milling at Small Radial Immersion,” Ann. CIRP, 54(1), pp. 357–362. [CrossRef]
Gradišek, J. , Kalveram, M. , Insperger, T. , Weinert, K. , Stépán, G. , Govekar, E. , and Grabec, I. , 2005, “ On Stability Prediction for Milling,” Int. J. Mach. Tools Manuf., 45(7–8), pp. 769–781. [CrossRef]
Mann, B. P. , Garg, N. K. , Young, K. A. , and Helvey, A. M. , 2005, “ Milling Bifurcations From Structural Asymmetry and Nonlinear Regeneration,” Nonlinear Dyn., 42(4), pp. 319–337. [CrossRef]
Stépán, G. , Szalai, R. , Mann, B. P. , Bayly, P. V. , Insperger, T. , Gradisek, J. , and Govekar, E. , 2005, “ Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments,” ASME J. Vib. Acoust., 127(2), pp. 197–203. [CrossRef]
Zatarain, M. , Muñoa, J. , Peigné, G. , and Insperger, T. , 2006, “ Analysis of the Influence of Mill Helix Angle on Chatter Stability,” Ann. CIRP, 55(1), pp. 365–368. [CrossRef]
Insperger, T. , Munoa, J. , Zatarain, M. A. , and Peigné, G. , 2006, “ Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle,” CIRP 2nd International Conference on High Performance Cutting, Vancouver, Canada, June, pp. 12–13.
Patel, B. R. , Mann, B. P. , and Young, K. A. , 2008, “ Uncharted Islands of Chatter Instability in Milling,” Int. J. Mach. Tools Manuf., 48(1), pp. 124–134. [CrossRef]
Schmitz, T. , and Smith, K. S. , 2009, Machining Dynamics: Frequency Response to Improved Productivity, Springer, New York.
Schmitz, T. , Davies, M. , Medicus, K. , and Snyder, J. , 2001, “ Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis,” Ann. CIRP, 50(1), pp. 263–268. [CrossRef]
Schmitz, T. , Medicus, K. , and Dutterer, B. , 2002, “ Exploring Once-Per-Revolution Audio Signal Variance as a Chatter Indicator,” Mach. Sci. Technol., 6(2), pp. 215–233. [CrossRef]
Schmitz, T. , 2003, “ Chatter Recognition by a Statistical Evaluation of the Synchronously Sampled Audio Signal,” J. Sound Vib., 262(3), pp. 721–730. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Flow diagram for the time domain simulation

Grahic Jump Location
Fig. 3

Stable cut, b  = 0.5 mm (left) time response for x (feed) direction displacement; (right) Poincaré map which plots x displacement versus velocity. The once-per-tooth sampled points are displayed as circles.

Grahic Jump Location
Fig. 4

Period-2, b  = 2.5 mm (left) time response for x (feed) direction displacement; (right) Poincaré map

Grahic Jump Location
Fig. 5

Secondary Hopf, b  = 5.0 mm (left) time response; (right) Poincaré map

Grahic Jump Location
Fig. 6

Bifurcation diagram for selected spindle speed (30,000 rpm) and system dynamics

Grahic Jump Location
Fig. 7

Simulated stability map (M=1μm contour)

Grahic Jump Location
Fig. 8

Milling experimental setup with laser vibrometer (LV), piezo-accelerometer (PA), laser tachometer (LT), and capacitance probe (CP)

Grahic Jump Location
Fig. 9

Bifurcation diagram for 3800 rpm, 26% radial immersion (left) simulated; (right) experiment

Grahic Jump Location
Fig. 10

Poincaré maps for 3800 rpm, 4.5 mm axial depth (left) simulated; (right) experiment

Grahic Jump Location
Fig. 11

Simulated stability map for experimental setup (M=1μm contour)

Grahic Jump Location
Fig. 12

M values for experiments (3800 rpm)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In