0
Research Papers

Calibration and Validation of a Mechanistic Micromilling Force Prediction Model

[+] Author and Article Information
Massimiliano Annoni

Politecnico di Milano,
Dipartimento di Meccanica,
Sezione Tecnologie Meccaniche e Produzione,
Via G. La Masa, 1,
Milano 20156, Italy
e-mail: massimiliano.annoni@polimi.it

Nicola Pusterla

Politecnico di Milano,
Via G. La Masa, 1,
Milano 20156, Italy

Lara Rebaioli

Politecnico di Milano,
Via G. La Masa, 1,
Milano 20156, Italy
e-mail: lara.rebaioli@polimi.it

Quirico Semeraro

Politecnico di Milano,
Via G. La Masa, 1,
Milano 20156, Italy
e-mail: quirico.semeraro@polimi.it

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received August 5, 2014; final manuscript received March 20, 2015; published online September 9, 2015. Assoc. Editor: Z. J. Pei.

J. Manuf. Sci. Eng 138(1), 011001 (Sep 09, 2015) (12 pages) Paper No: MANU-14-1421; doi: 10.1115/1.4030210 History: Received August 05, 2014

Mechanistic force prediction models require a calibration phase to determine the cutting coefficients describing the tool–target material interaction. The model prediction performance depends on the experimental correctness and representativeness of input data, especially in micromilling, where facing process uncertainties is a big challenge. The present paper focuses on input data correctness introducing a clear and repeatable calibration experimental procedure based on accurate force data acquisitions. Input data representativeness has been directly connected to the calibration window choice, i.e., the selection of the space of process parameters combinations used to calibrate the model. Also, the model validation has to be carefully carried out to make the model significant: the present paper proposes a clear and repeatable validation procedure based on the model performance index calculation over the whole process operating window, i.e., the space of parameters where the process works correctly. An objective indication of the model suitability can be obtained by applying this procedure. Comparisons among prediction performances produced by different calibration windows are allowed. This paper demonstrates how the calibration window selection determines the model prediction performance, which seems to improve if calibration is carried out where forces assume high values. Some important considerations on the process parameters role on cutting forces and on the model capability have also been drawn from the model validation results.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Topics: Calibration , Cutting
Your Session has timed out. Please sign back in to continue.

References

Ehmann, K. F. , Kapoor, S. G. , DeVor, R. E. , and Lazoglu, I. , 1997, “Machining Process Modeling: A Review,” ASME J. Manuf. Sci. Eng., 119(4), pp. 655–663. [CrossRef]
Van Luttervelt, C. A. , Childs, T. H. C. , Jawahir, I. S. , Klocke, F. , Venuvinod, P. K. , Altintas, Y. , Armarego, E. J. A. , Dornfeld, D. , Grabec, I. , Leopold, J. , Lindstrom, B. , Lucca, D. , Obikawa, T. , Shirakashi, T. , and Sato, H. , 1998, “Present Situation and Future Trends in Modeling of Machining Operations—Progress Report of the CIRP Working Group “Modeling of Machining Operations,” CIRP Ann., 47(2), pp. 588–626. [CrossRef]
Liu, X. , DeVor, R. E. , Kapoor, S. G. , and Ehmann, K. F. , 2004, “The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science,” ASME J. Manuf. Sci. Eng., 126(4), pp. 666–678. [CrossRef]
Dornfeld, D. , Min, S. , and Takeuchi, Y. , 2006, “Recent Advances in Mechanical Micromachining,” CIRP Ann.-Manuf. Technol., 52(2), pp. 483–507.
Dornfeld, D. , and Lee, D. E. , 2007, Precision Manufacturing, Springer, New York.
Arrazola, P. J. , Özel, T. , Umbrello, D. , Davies, M. , and Jawahir, I . S. , 2013, “Recent Advances in Modelling of Metal Machining Processes,” CIRP Ann.-Manuf. Technol., 62(2), pp. 695–718. [CrossRef]
Weule, H. , Huntrup, V. , and Tritschle, H. , 2001, “Micro-Cutting of Steel to Meet New Requirements in Miniaturization,” CIRP Ann.-Manuf. Technol., 49(1), pp. 61–64. [CrossRef]
Liu, X. , DeVor, R. E. , and Kapoor, S. G. , 2006, “An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining,” ASME J. Manuf. Sci. Eng., 128(2), pp. 474–481. [CrossRef]
Subbiah, S. , and Melkote, S. N. , 2007, “Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting,” ASME J. Manuf. Sci. Eng., 129(2), pp. 321–331.
Wang, J. , Gong, Y. , Abba, G. , Antoine, J. F. , and Shi, J. , 2009, “Chip Formation Analysis in Micromilling Operation,” Int. J. Adv. Manuf. Technol., 45(5–6), pp. 430–447. [CrossRef]
Jin, X. , and Altintas, Y. , 2012, “Prediction of Micro-Milling Forces With Finite Element Method,” J. Mater. Process. Technol., 212(3), pp. 542–552. [CrossRef]
Afazov, S. M. , Ratchev, S. M. , and Segal, J. , 2010, “Modeling and Simulation of Micro-Milling Cutting Forces,” J. Mater. Process. Technol., 210(15), pp. 2154–2162. [CrossRef]
Komanduri, R. , Chandrasekaran, N. , and Raff, L. M. , 1998, “Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach,” Wear, 219(1), pp. 84–97. [CrossRef]
Cai, M. B. , Li, X. P. , and Rahman, M. , 2007, “Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation,” Int. J. Mach. Tools Manuf., 47(1), pp. 75–80. [CrossRef]
Kim, C. J. , Mayor, J. R. , and Ni, J. , 2012, “Molecular Dynamics Simulations of Plastic Material Deformation in Machining With a Round Cutting Edge,” Int. J. Precis. Eng. Manuf., 13(8), pp. 1303–1309. [CrossRef]
Budak, E. , Altintas, Y. , and Armarego, E. J. A. , 1996, “Prediction of Milling Force Coefficients From Orthogonal Cutting Data,” ASME J. Manuf. Sci. Eng., 118(2), pp. 216–224. [CrossRef]
Lee, P. , and Altintas, Y. , 1996, “Prediction of Ball-End Milling Forces From Orthogonal Cutting Data,” Int. J. Mach. Tools Manuf., 36(9), pp. 1059–1072. [CrossRef]
Altintas, Y. , and Lee, P. , 1998, “Mechanics and Dynamics of Ball End Milling,” ASME J. Manuf. Sci. Eng., 120(4), pp. 684–692. [CrossRef]
Engin, S. , and Altintas, Y. , 2001, “Mechanics and Dynamics of General Milling Cutters—Part I: Helical End Mills,” Int. J. Mach. Tools Manuf., 41(15), pp. 2195–2212. [CrossRef]
Bissacco, G. , Hansen, H. N. , and Slunsky, J. , 2008, “Modeling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling,” CIRP Ann.-Manuf. Technol., 57(1), pp. 113–116. [CrossRef]
Kaymakci, M. , Kilic, Z. M. , and Altintas, Y. , 2012, “Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations,” Int. J. Mach. Tools Manuf., 54–55, pp. 34–45. [CrossRef]
Tuysuz, O. , Altintas, Y. , and Feng, H. Y. , 2013, “Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect,” Int. J. Mach. Tools Manuf., 66, pp. 66–81. [CrossRef]
Altintas, Y. , and Kilic, Z. M. , 2013, “Generalized Dynamic Model of Metal Cutting Operations,” CIRP Ann.-Manuf. Technol., 62(1), pp. 47–50. [CrossRef]
Kumar, M. , Chang, C. J. , Melkote, S. N. , and Joseph, V . R. , 2013, “Modeling and Analysis of Forces in Laser Assisted Micro Milling,” ASME J. Manuf. Sci. Eng., 135(4), p. 041018. [CrossRef]
Tlusty, J. , and MacNeil, P. , 1975, “Dynamics of Cutting Forces in End Milling,” CIRP Ann., 24(1), pp. 21–25.
Kline, W. A. , DeVor, R. E. , and Lindberg, J. R. , 1982, “The Prediction of Cutting Forces in End Milling With Application of Cornering Cuts,” Int. J. Mach. Tool Des. Res., 22(1), pp. 7–22. [CrossRef]
Sutherland, J. W. , and DeVor, R. E. , 1986, “An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems,” ASME J. Eng. Ind., 108(4), pp. 269–279. [CrossRef]
Bao, W. Y. , and Tansel, I . N. , 2000, “Modeling Micro-End-Milling Operations—Part I: Analytical Cutting Force Model,” Int. J. Mach. Tools Manuf., 40(15), pp. 2155–2173. [CrossRef]
Bao, W. Y. , and Tansel, I . N. , 2000, “Modeling Micro-End-Milling Operations—Part II: Tool Run-Out,” Int. J. Mach. Tools Manuf., 40(15), pp. 2175–2192. [CrossRef]
Bao, W. Y. , and Tansel, I . N. , 2000, “Modeling Micro-End-Milling Operations—Part III: Influence of Tool Wear,” Int. J. Mach. Tools Manuf., 40(15), pp. 2193–2211. [CrossRef]
Zaman, M. T. , Kumar, A. S. , Rahman, M. , and Sreeram, S. , 2006, “A Three-Dimensional Analytical Cutting Force Model for Micro End Milling Operation,” Int. J. Mach. Tools Manuf., 46(3–4), pp. 353–366. [CrossRef]
Malekian, M. , Park, S. S. , and Jun, M. B. G. , 2009, “Modeling of Dynamic Micro-Milling Cutting Forces,” Int. J. Mach. Tools Manuf., 49(7–8), pp. 586–598. [CrossRef]
Jun, M. B. G. , Goo, C. , Malekian, M. , and Park, S. S. , 2012, “A New Mechanistic Approach for Micro End Milling Force Modeling,” ASME J. Manuf. Sci. Eng., 134(1), p. 011006. [CrossRef]
Yucesan, G. , Xie, Q. , and Bayoumi, A. E. , 1993, “Determination of Process Parameters Through a Mechanistic Force Model of Milling Operations,” Int. J. Mach. Tools Manuf., 33(4), pp. 627–641. [CrossRef]
Ko, J. H. , Yun, W. S. , Cho, D. W. , and Ehmann, K. F. , 2002, “Development of a Virtual Machining System—Part1: Approximation of the Size Effect for Cutting Force Prediction,” Int. J. Mach. Tools Manuf., 42(15), pp. 1595–1605. [CrossRef]
Ko, J. H. , and Cho, D. W. , 2005, “3D Ball‐End Milling Force Model Using Instantaneous Cutting Force Coefficients,” ASME J. Manuf. Sci. Eng., 127(1), pp. 1–12. [CrossRef]
Lee, H. U. , Cho, D. W. , and Ehmann, K. F. , 2008, “A Mechanistic Model of Cutting Forces in Micro‐End‐Milling With Cutting‐Condition‐Independent Cutting Forces Coefficients,” ASME J. Manuf. Sci. Eng., 130(3), p. 031102. [CrossRef]
Vogler, M. P. , Kapoor, S. G. , and DeVor, R. E. , 2004, “On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part II: Cutting Force Prediction,” ASME J. Manuf. Sci. Eng., 126(4), pp. 695–705. [CrossRef]
Jun, M. B. G. , Liu, X. , DeVor, R. E. , and Kapoor, S. G. , 2006, “Investigation of the Dynamics of Micro-End Milling—Part 1: Model Development,” ASME J. Manuf. Sci. Eng., 128(4), pp. 893–900. [CrossRef]
Jun, M. B. G. , Liu, X. , DeVor, R. E. , and Kapoor, S. G. , 2006, “Investigation of the Dynamics of Micro-End Milling—Part 2: Model Validation and Interpretation,” ASME J. Manuf. Sci. Eng., 128(4), pp. 901–912. [CrossRef]
Altintas, Y. , and Jin, X. , 2011, “Mechanics of Micro-Milling With Round Edge Tools,” CIRP Ann.-Manuf. Technol., 60(1), pp. 77–80. [CrossRef]
Waldorf, D. J. , DeVor, R. E. , and Kapoor, S. G. , 1998, “Slip-Line Field for Ploughing During Orthogonal Cutting,” ASME J. Manuf. Sci. Eng., 120(4), pp. 693–698. [CrossRef]
Jin, X. , and Altintas, Y. , 2011, “Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect,” J. Mater. Process. Technol., 211(3), pp. 339–355. [CrossRef]
Jin, X. , and Altintas, Y. , 2013, “Chatter Stability Model of Micro-Milling With Process Damping,” ASME J. Manuf. Sci. Eng., 135(3), p. 031011. [CrossRef]
Korkmaz, E. , Bediz, B. , Gozen, B. A. , and Ozdoganlar, O. B. , 2014, “Dynamic Characterization of Multi-Axis Dynamometers,” Precis. Eng., 38(1), pp. 148–161. [CrossRef]
Kistler 9317B 3-Component Force Link Instruction Manual, last accessed December 11, 2013, http://www.kistler.com/us/en/product/force/9317B
Altintas, Y. , and Park, S. S. , 2004, “Dynamic Compensation of Spindle‐Integrated Force Sensors,” CIRP Ann.-Manuf. Technol., 53(1), pp. 305–308. [CrossRef]
Annoni, M. , and Semeraro, Q. , 2010, “Factors Affecting the Force Variability in Micro-End-Milling,” 7th International Conference on Multi-Material Micro Manufacture, 4M 2010 Conference, Bourg en Bresse and Oyonnax, France, pp. 161–164.
Kim, C. J. , Mayor, J. R. , and Ni, J. , 2004, “A Static Model of Chip Formation in Microscale Milling,” ASME J. Manuf. Sci. Eng., 126(4), pp. 710–718. [CrossRef]
Montgomery, D. C. , 2001, Design and Analysis of Experiments, 5th ed., Wiley, New York.

Figures

Grahic Jump Location
Fig. 1

Model reference system and symbols [37]

Grahic Jump Location
Fig. 2

Comparison between measured, compensated, and low-pass filtered cutting forces. (a) Time domain and (b) frequency domain. (mill: Dormer S150.5; D = 0.5 mm; I = 2; re = 4 μm; αr,n = 0 deg; θh = 30 deg; workpiece: Aluminum 6082-T6; cutting parameters: ap = 0.05 mm; ae = 0.25 mm (only one cutting edge engaged at the same time); fz = 4 μm; vc = 27.85 m/min; n = 17,730 rpm; milling approach: up-milling; fs = 25,600 Hz; anti-aliasing filter cut-off frequency = 11,500 Hz; fifth order Butterworth low-pass filter cutoff frequency = 6000 Hz (in case of measured and compensated forces); 1300 Hz (in case of low-pass filtered forces)).

Grahic Jump Location
Fig. 3

Specimen mounted on the dynamometer

Grahic Jump Location
Fig. 4

RMSEx,complete map at vc = +1 (28.04 m/min (17,850 rpm)) and ap = +1 (0.1 mm). Solid dots represent points where both calibration and validation have been carried out. Empty dots represent points where only validation has taken place.

Grahic Jump Location
Fig. 5

RMSEx,reference map at vc = +1 (28.04 m/min (17,850 rpm)) and ap = +1 (0.1 mm). Empty dots represent points where only validation has taken place. No calibration points are visible on this plane.

Grahic Jump Location
Fig. 6

RMSEx,suggested map at vc = +1 (28.04 m/min (17,850 rpm)) and ap = +1 (0.1 mm). Solid dots represent points where both calibration and validation have been carried out. Empty dots represent points where only validation has taken place.

Grahic Jump Location
Fig. 7

Comparison between measured and predicted cutting forces for one tooth passage. (a) ap = 0.1 mm; ae = 0.250 mm (0.5D); fz = 3 μm; vc = 13.90 m/min. (b) ap = 0.1 mm; ae = 0.5 mm (D); fz = 4 μm; vc = 28.04 m/min.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In