Research Papers

On Necessary Pumping Pressures for Industrial Process-Driven Particle-Laden Fluid Flows

[+] Author and Article Information
T. I. Zohdi

Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720-1740

1Over 50% (by mass) of man-made materials start in granulated form.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received March 28, 2015; final manuscript received May 8, 2015; published online October 1, 2015. Assoc. Editor: Donggang Yao.

J. Manuf. Sci. Eng 138(3), 031009 (Oct 01, 2015) Paper No: MANU-15-1137; doi: 10.1115/1.4030620 History: Received March 28, 2015; Revised May 08, 2015

Due to increasing demands for faster and faster manufacturing of new complex materials, such as casting of particulate composites, the determination of pumping pressures needed for particle-laden fluids through channels is critical. In particular, the increase in viscosity as a function of the particle volume fraction can lead to system malfunction, due to an inability to deliver necessary pressures to pump the more viscous fluid through the system. This paper studies the pressure gradient needed to maintain a given flow rate, explicitly as a function of the volume fraction of particles present in the fluid. It is also crucial to control voids in the casted products, which can be traced to air-entrainment, spurious internal reactions, dewetting, etc., which can be traced to high Reynolds numbers. Accordingly, an expression for the resulting Reynolds number as a function of the particle volume fraction and flow rate is also developed. Numerical examples are provided to illustrate the practical use of the derived relations to characterize the necessary pumping pressures for process-driven, particle-laden fluid flows.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Fig. 1

(a) A particle-laden fluid in a channel and (b) the increase in the ratio of effective viscosity to baseline fluid viscosity (μ*/μf) as a function of secondary particle volume fraction (νp)

Grahic Jump Location
Fig. 2

Progressive blunting of the velocity profile with increasing Reynolds number

Grahic Jump Location
Fig. 3

Trends—Left: the pressure gradient needed (-(ΔP/Δx)) as a function of the desired volumetric flow rate (Qo) for various volume fractions of νp. Right: the resulting Reynolds number as a function of the volumetric flow rate (Qo).




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In