0
Research Papers

Flank Wear Characterization in Aluminum Alloy (6061 T6) With Nanofluid Minimum Quantity Lubrication Environment Using an Uncoated Carbide Tool

[+] Author and Article Information
M. S. Najiha

Faculty of Mechanical Engineering,
Universiti Malaysia Pahang,
Pekan 26600, Pahang, Malaysia
e-mail: najihahassany@gmail.com

M. M. Rahman

Faculty of Mechanical Engineering,
Universiti Malaysia Pahang,
Pekan 26600, Pahang, Malaysia;
Automotive Engineering Centre,
Universiti Malaysia Pahang,
Pekan 26600, Pahang, Malaysia
e-mail: mustafizur@ump.edu.my

A. R. Yusoff

Faculty of Manufacturing Engineering,
Universiti Malaysia Pahang,
Pekan 26600, Pahang, Malaysia
e-mail: razlan@ump.edu.my

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received July 6, 2014; final manuscript received March 6, 2015; published online September 9, 2015. Assoc. Editor: Patrick Kwon.

J. Manuf. Sci. Eng 137(6), 061004 (Sep 09, 2015) (7 pages) Paper No: MANU-14-1358; doi: 10.1115/1.4030060 History: Received July 06, 2014

This study is focused on the categorical analysis of flank wear mechanisms in end milling of aluminum alloy AA6061 with minimum quantity lubrication (MQL) conditions using nanofluid. Wear mechanisms for the water-based TiO2 nanofluid with a nanoparticle volume fraction of 1.5% are compared with conventional oil-based MQL (0.48 ml/min and 0.83 ml/min) using an uncoated cemented carbide insert. Micro-abrasion, micro-attrition, and adhesion wear leading to edge chipping are identified as the main wear mechanisms. Aluminum deposits on the tool flank surface are observed. Results show that the water-based nanofluid shows potential as a capable MQL cutting media, in terms of tool wear, replacing the conventional oil-based MQL.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Haapala, K. R. , Zhao, F. , Camelio, J. , Sutherland, J. W. , Skerlos, S. J. , Dornfeld, D. A. , Jawahir, I . S. , Clarens, A. F. , and Rickli, J. L. , 2013, “A Review of Engineering Research in Sustainable Manufacturing,” ASME J. Manuf. Sci. Eng., 135(4), p. 041013. [CrossRef]
Nachtman, E. S. , and Kalpakjian, S. , 1985, Lubricants and Lubrication in Metalworking Operations, Marcel Dekker, New York.
Marksberry, P. W. , and Jawahir, I. S. , 2008, “A Comprehensive Tool-Wear/Tool-Life Performance Model in the Evaluation of NDM (Near Dry Machining) for Sustainable Manufacturing,” Int. J. Mach. Tools Manuf., 48(7–8), pp. 878–886. [CrossRef]
Lawal, S. A. , Choudhury, I. A. , and Nukman, Y. , 2013, “Developments in the Formulation and Application of Vegetable Oil-Based Metalworking Fluids in Turning Process,” Int. J. Adv. Manuf. Technol., 67(5–8), pp. 1765–1776. [CrossRef]
Filipovic, A. , Olson, W. , Pandit, S. , and Sutherland, J. W. , 2000, “Modeling of Cutting Fluid System Dynamics,” 2000 Japan–USA Symposium on Flexible Automation, ASME, MED-Vol 8, pp. 433–440.
Adler, D. P. , Hii, W. W. S. , Michalek, D. J. , and Sutherland, J. W. , 2006, “Examining the Role of Cutting Fluids in Machining and Efforts to Address Associated Environmental/Health Concerns,” Mach. Sci. Technol., 10(1), pp. 23–58. [CrossRef]
Sujova, E. , 2012, “Contamination of the Working Air Via Metalworking Fluids Aerosols,” Eng. Rev., 32(1), pp. 9–15.
Canter, N. , 2003, “The Possibilities and Limitations of Dry Machining,” Tribol. Lubr. Technol., 59(11), pp. 30–35.
Gaitonde, V. N. , Kamik, R. S. , and Davim, J. P. , 2010, “Minimum Quantity Lubrication in Machining,” Sustainable Manufacturing, J. P. Davim , ed., Wiley, Hoboken, NJ.
Astkhov, V. P. , and Joksch, S. , 2012, Metal Working Fluids for Cutting and Grinding—Fundamentals and Recent Advances, Woodhead Publishing Limited, Cambridge, UK.
Sharma, V. S. , Dogra, M. , and Suri, N. M. , 2009, “Cooling Techniques for Improved Productivity in Turning,” Int. J. Mach. Tools Manuf., 49(6), pp. 435–453. [CrossRef]
Srikanth, K. S. , Jaisankar, V. , and Vasisht, J. S. , 2014, “Evaluation of Tool Wear and Surface Finish of AISI 316l Stainless Steel Using Nano Cutting Environment,” Int. J. Mech. Prod. Eng., 2(4), pp. 73–76.
Brnic, J. , Canadija, M. , Turkalj, G. , Lanc, D. , Pepelnjak, T. , and Barisic, B. , 2009, “Tool Material Behavior at Elevated Temperatures,” Mater. Manuf. Processes, 24(7–8), pp. 758–762. [CrossRef]
Deng, W. J. , Xia, W. , Li, C. , and Tang, Y. , 2010, “Ultrafine Grained Material Produced by Machining,” Mater. Manuf. Processes, 25(6), pp. 355–359. [CrossRef]
Kurniawan, N. M. D. , and Yusof, S. S. , 2010, “Hard Machining of Stainless Steel Using Wiper Coated Carbide: Tool Life and Surface Integrity,” Mater. Manuf. Processes, 25(6), pp. 370–377. [CrossRef]
Kotaiah, R. K. , Srinivas, J. , Babu, K. J. , and Kolla, S. , 2010, “Prediction of Optimal Cutting States During Inward Turning: An Experimental Approach,” Mater. Manuf. Processes, 25(6), pp. 432–441. [CrossRef]
Rao, S. N. , Satyanarayana, B. , and Venkatasubbaiah, K. , 2011, “Experimental Estimation of Tool Wear and Cutting Temperatures in MQL Using Cutting Fluids With CNT Inclusion,” Int. J. Eng. Sci. Technol., 3(4), pp. 2928–2931. [CrossRef]
Saidur, R. , Leong, K. Y. , and Mohammad, H. A. , 2011, “A Review on Applications and Challenges of Nanofluids,” Renewable Sustainable Energy Rev., 15(3), pp. 1646–1668. [CrossRef]
Choi, S. U. S. , 1995, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of Non-Newtonian Flows, D. A. Siginer , and H. P. Wang , eds., ASME, New York, pp. 99–105.
Xuan, Y. , and Li, Q. , 2000, “Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Fluid Flow, 21(1), pp. 58–64. [CrossRef]
Krajnik, P. , Pusavec, F. , and Rashid, A. , 2011, “Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies,” Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing, G. Seliger , M. K. Marwan , Khraisheh, and I. S., Jawahir , eds., Springer-Verlag, Berlin.
Reddy, N. S. K. , and Rao, P. V. , 2006, “Experimental Investigation to Study the Effect of Solid Lubricants on Cutting Forces and Surface Quality in End Milling,” Int. J. Mach. Tools Manuf., 46(2), pp. 189–198. [CrossRef]
Srikant, R. R. , Rao, D. N. , Subrahmanyam, M. S. , and Krishna, P. V. , 2009, “Applicability of Cutting Fluids With Nanoparticle Inclusion as Coolants in Machining,” Proc. Inst. Mech. Eng., Part J, 223(2), pp. 221–226. [CrossRef]
Prabhu, S. , and Vinayagam, B. K. , 2010, “Nano Surface Generation of Grinding Process Using Carbon Nano Tubes,” Sadhana, 35(6), pp. 747–760. [CrossRef]
Lee, P. H. , Nam, T. S. , Li, C. , and Lee, S. W. , 2010, “Environmentally-Friendly Nano-Fluid Minimum Quantity Lubrication (MQL) Meso-Scale Grinding Process Using Nano-Diamond Particles,” 2010 International Conference on Manufacturing Automation (ICMA ’10) IEEE Computer Society, Hong Kong, Dec. 13–15, pp. 44–49.
Nam, T. S. , Lee, P. H. , and Lee, S. W. , 2011, “Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication,” Int. J. Mach. Tools Manuf., 51(7), pp. 649–652. [CrossRef]
Park, K. H. , Ewald, B. , and Kwon, P. Y. , 2011, “Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling,” ASME J. Tribol., 133(3), p. 031803. [CrossRef]
Sodavadia, K. P. , and Makwana, A. H. , 2014, “Experimental Investigation on the Performance of Coconut Oil Based Nano Fluid as Lubricants During Turning of AISI 304 Austenitic Stainless Steel,” Int. J. Adv. Mech. Eng., 4(1), pp. 55–60.
Shen, B. , Shih, A. J. , and Simon, C. T. , 2008, “Application of Nanofluids in Minimum Quantity Lubrication Grinding,” Tribol. Trans., 51(6), pp. 730–737. [CrossRef]
Gu, Y. , Zhao, X. , Liu, Y. , and Lv, Y. , 2014, “Preparation and Tribological Properties of Dual-Coated TiO2 Nano-Particles as Water-Based Lubricant Additives,” J. Nanomater., 2014, p. 785680. [CrossRef]
Xue, Q. , Liu, W. , and Zhang, Z. , 1997, “Friction and Wear Properties of Surface-Modified TiO2 Nano-Particle as an Additive in Liquid Paraffin,” Wear, 213(1–2), pp. 29–32. [CrossRef]
Ye, W. , Cheng, T. , Ye, Q. , Guo, X. , Zhang, Z. , and Dang, H. , 2003, “Preparation and Tribological Properties of Tetrafluorobenzoic Acid Modified TiO2 Nano-Particles as Lubricant Additives,” Mater. Sci. Eng.A, 359(1–2), pp. 82–85. [CrossRef]
Qian, J. , Yin, X. , Wang, N. , Liu, L. , and Xing, J. , 2012, “Preparation and Tribological Properties of Stearic Acid-Modified Hierarchical Anatase TiO2 Microcrystals,” Appl. Surf. Sci., 258(7), pp. 2778–2782. [CrossRef]
Pak, B. C. , and Cho, Y. I. , 1998, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles,” Exp. Heat Transfer, 11(2), pp. 151–170. [CrossRef]
Duangthongsuk, W. , and Wongwises, S. , 2009, “Measurement of Temperature Dependent Thermal Conductivity and Viscosity of TiO2–Water Nanofluids,” Exp. Therm. Fluid Sci., 33(4), pp. 706–714. [CrossRef]
Akbari, M. , Galanis, N. , and Behzadmehr, A. , 2012, “Comparative Assessment of Single and Two-Phase Models for Numerical Studies of Nanofluid Turbulent Forced Convection,” Int. J. Heat Fluid Flow, 37, pp. 136–146. [CrossRef]
Ghavam, K. , Bagheriasl, R. , and Worswick, M. J. , 2014, “Analysis of Nonisothermal Deep Drawing of Aluminum Alloy Sheet With Induced Anisotropy and Rate Sensitivity at Elevated Temperatures,” ASME J. Manuf. Sci. Eng., 136(1), p. 011006. [CrossRef]
Wang, X. , and Kwon, P. Y. , 2014, “WC/Co Tool Wear in Dry Turning of Commercially Pure Aluminium,” ASME J. Manuf. Sci. Eng., 136(3), p. 031006. [CrossRef]
Attanasio, A. , Ceretti, E. , Giardini, C. , and Cappellini, C. , 2014, “Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models,” ASME J. Manuf. Sci. Eng., 135(5), p. 051012. [CrossRef]
Hamilton, R. L. , and Crosser, O. K. , 1962, “Thermal Conductivity of Heterogeneous Two-Component Systems,” Ind. Eng. Chem. Fundam., 1(3), pp. 187–191. [CrossRef]
Choi, S. U. S. , and Eastman, J. A. , 1995, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,” ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA.
Sattler, K. D. , 2011, Handbook of Nanophysics, Nanoparticles and Quantum Dots, CRC Press, Boca Raton, FL.
Kadirgama, K. , Noor, M. M. , Zuki, N. M. , Rahman, M. M. , Rejab, M. R. M. , and Daud, R. , 2008, “Optimization of Surface Roughness in end Milling on Mould Aluminium Alloys (AA6061-T6) Using Response Surface Method and Radian Basis Function Network,” Jordan J. Mech. Ind. Eng., 2(4), pp. 209–214.
Gu, J. , Barber, G. , Tung, S. , and Gu, R. , 1999, “Tool Life and Wear Mechanism of Uncoated and Coated Milling Inserts,” Wear, 225–229(1), pp. 273–284. [CrossRef]
Zaima, S. , and Takatsuji, Y. , 1977, “On the Flank Wear of Carbide Tool in Al–Si Cast Alloy Machining,” J. Jpn Inst. Light Metals, 41, pp. 1221–1228.
Hu, J. , and Chou, Y. K. , 2007, “Characterizations of Cutting Tool Flank Wear-Land Contact,” Wear, 263(7–12), pp. 1454–1458. [CrossRef]
Buhsmer, C. P. , and Crayton, P. H. , 1971, “Carbon Self-Diffusion in Tungsten Carbide,” J. Mater. Sci., 6(7), pp. 981–988. [CrossRef]
Hwang, Y. , Lee, C. , Choi, Y. , Cheong, S. , Kim, D. , and Lee, K. , 2011, “Effect of the Size and Morphology of Particles Dispersed in Nano-Oil on Friction Performance Between Rotating Discs,” J. Mech. Sci. Technol., 25(11), pp. 2853–2857. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

TEM image of TiO2 nanoparticles

Grahic Jump Location
Fig. 2

Tungsten carbide (WC)–Co 6% insert properties and geometry (M/s CERATIZIT)

Grahic Jump Location
Fig. 3

(a) Micro-attrition and micro-abrasion wear processes; (b) and (c) adhesion and fracture on the edge; and (d) EDX pattern for element composition for uncoated WC–Co 6.0% tool at depth of cut = 3.0 mm, speed = 5300 rpm, feed rate = 440 mm/min, MQL flow rate = 0.83 ml/min

Grahic Jump Location
Fig. 4

(a) Edge fracture; (b) micro-abrasion and micro-attrition; and (c) energy-dispersive X-ray spectroscopy analysis (EDX) pattern for element composition at depth of cut = 3.0 mm, speed = 5500 rpm, feed rate = 440 mm/min, MQL flow rate = 0.48 ml/min

Grahic Jump Location
Fig. 5

(a) Abrasion marks and attrition on nose region; and (b) edge fracture of the tool at depth of cut = 3.0 mm, speed = 5300 rpm, feed rate = 440 mm/min, MQL flow rate = 0.83 ml/min, nanoparticles 1.5% fraction

Grahic Jump Location
Fig. 6

(a) EDX spectra for the micro-area selected on the tool cutting edge; (b) micro-area selected for the analysis of elements away from the main cutting edge on an uncoated WC–Co 6.0% tool at depth of cut = 3.0 mm, speed = 5300 rpm, feed rate = 440 mm/min, MQL flow rate = 0.83 ml/min, nanoparticles 1.5% fraction

Grahic Jump Location
Fig. 7

Abrasion and attrition wear on: (a) nose region; and (b) on main cutting edge for an uncoated WC–Co 6.0% tool at depth of cut = 3.0 mm, speed = 5500 rpm, feed rate = 440 mm/min, MQL flow rate = 0.48 ml/min, nanoparticles 1.5% fraction

Grahic Jump Location
Fig. 8

(a) Micro-area selected on main cutting edge; and (b) micro-area selected at some distance from the cutting edge of an uncoated WC–Co 6.0% tool at depth of cut = 3.0 mm, speed = 5500 rpm, feed rate = 440 mm/min, MQL flow rate = 0.48 ml/min, nanoparticles 1.5% fraction

Grahic Jump Location
Fig. 9

Flank wear comparison for MQL and nanofluid MQL conditions

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In